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Abstract ∗

We present Sequential Neural Variational Inference (SNVI), an approach to perform
Bayesian inference in models with intractable likelihoods. SNVI combines likelihood-
estimation (or likelihood-ratio-estimation) with variational inference to achieve a scalable
simulation-based inference approach. SNVI maintains the flexibility of likelihood(-ratio)
estimation to allow arbitrary proposals for simulations, while simultaneously providing
a functional estimate of the posterior distribution without requiring MCMC sampling.
We present several variants of SNVI and demonstrate that they are substantially more
computationally efficient than previous algorithms, without loss of accuracy on benchmark
tasks. We apply SNVI to a neuroscience model of the pyloric network in the crab and
demonstrate that it can infer the posterior distribution with one order of magnitude fewer
simulations than previously reported. SNVI vastly reduces the computational cost of
simulation-based inference while maintaining accuracy and flexibility, making it possible
to tackle problems that were previously inaccessible.

∗Parts of this chapter are currently under review for publication and hence revised by Michael Deistler
and Jakob Macke (see https://openreview.net/forum?id=kZ0UYdhqkNY).
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Zusammenfassung

Wir präsentieren “Sequential Neural Variational inference” (SNVI), ein Ansatz zur Durch-
führung von Bayesscher Inferenz in Modellen ohne analytischer Likelihood-Funktion. SNVI
kombiniert Likelihood-Schätzung (oder Likelihood-Ratio-Schätzung) mit ‘variational infer-
ence’ um einen skalierbaren simulationsbasierte Inferenzstrategie zu erhalten. SNVI behält
die Flexibilität der Likelihood(-Ratio)-Schätzung bei und kann daher den Großteil des
Simulationsbudget in relevanten Bereichen platzieren. Gleichzeitig wird eine funktionale
Schätzung der A-posteriori-Verteilung geliefert, ohne dass MCMC erforderlich ist. Wir
stellen mehrere Varianten von SNVI vor und zeigen, dass sie wesentlich effizienter sind
als frühere Algorithmen, ohne dabei an Genauigkeit bei üblichen Benchmark-Aufgaben
zu verlieren. Wir wenden SNVI auf ein neurowissenschaftliches Modell des pylorischen
Netzwerkes des Krebses an und zeigen, dass es die A-posteriori-Verteilung mit einer
Größenordnung weniger Simulationen ableiten kann als bisher vergleichbare Methoden.
SNVI reduziert die Rechenkosten der simulationsbasierten Inferenz erheblich, während
die Genauigkeit und Flexibilität beibehalten wird. Das ermöglicht Inferenz Probleme
anzugehen, die zuvor unzugänglich waren.
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1. Introduction∗

Many domains in science and engineering use numerical simulations to model empirically
observed phenomena. These models are designed by domain experts and are built to
produce mechanistic insights. However, in many cases, some parameters of the simulator
cannot be experimentally measured and need to be inferred from data. A principled
way to identify parameters that match empirical observations is Bayesian inference.
However, for many models of interest, one can only sample from the model by simulating a
(stochastic) computer program, but explicitly evaluating the likelihood p(x|θ) is intractable.
Traditional methods to perform Bayesian inference in such simulation-based inference
(SBI), also known as likelihood-free inference scenarios, include Approximate Bayesian
computation (ABC) (Beaumont et al., 2002a) and synthetic likelihood (SL) (Wood,
2010) methods. However, these methods generally struggle with high-dimensional data
and typically require one to design or learn (Chen et al., 2021) summary statistics and
distance functions.

Recently, several methods using neural density(-ratio) estimation have emerged. These
methods train neural networks to learn the posterior (SNPE, Papamakarios and Murray,
2016; Lueckmann et al., 2017; Greenberg et al., 2019), the likelihood (SNLE, Papamakarios
et al., 2019; Lueckmann et al., 2019a), or the likelihood-to-evidence ratio (SNRE, Thomas
et al., 2021; Hermans et al., 2020; Durkan et al., 2020a; Miller et al., 2022).

To improve the simulation efficiency of these methods, sequential training schemes have
been proposed: Initially, parameters are sampled from the prior distribution to train an
estimation-network. Subsequently, new samples are drawn adaptively to focus training on
specific regions in parameter space, thus allowing the methods to scale to larger models
with more parameters.

In practice, however, it has remained a challenge to realize the full potential of these
sequential schemes: For sequential neural posterior estimation (SNPE) techniques, the
loss function needs to be adjusted across rounds (Greenberg et al., 2019), and it has been
reported that this can be problematic if the proposal distribution is very different from
prior, and lead to ‘leakage’ of probability mass into regions without prior support (Durkan
et al., 2020a). Both sequential neural likelihood (SNLE) and likelihood-ratio (SNRE)
methods require MCMC sampling, which can become prohibitively slow– MCMC sampling
is required for each round of simulations, which, for high-dimensional models, can take
more time than running the simulations and training the neural density estimator.

∗Parts of this chapter are currently under blind open review for publication and hence revised by
Michael Deistler and Jakob Macke (see https://openreview.net/forum?id=kZ0UYdhqkNY).
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Chapter 1. Introduction

-

Figure 1.1.: Illustration of SNVI. We first learn the likelihood p(x|θ) for any θ. We then
use variational inference to learn the posterior distribution minimizing some
divergence measure D. The obtained posterior distribution is sampled with
sampling importance resampling (SIR) to run new simulations and refine the
likelihood estimator.

Our goal is to provide a method that combines the advantages of posterior-targeting
methods and those targeting likelihood(-ratios): Posterior targeting methods allow rapid
inference by providing a functional approximation to the posterior which can be evaluated
without the need to use MCMC sampling. Conversely, a key advantage of likelihood(-ratio)
targeting methods is their flexibility– learned likelihoods can e.g. be used to integrate
information from multiple observations, or can be used without retraining if the prior
is changed. In addition, they can be applied with any active-learning scheme without
requiring modifications of the loss-function.

We achieve this method by combining likelihood(-ratio) estimation with variationally
learned inference networks using normalizing flows (Rezende and Mohamed, 2015; Papa-
makarios et al., 2017; Durkan et al., 2019a) and sampling importance resampling (SIR)
(Rubin, 1988). We name our approach Sequential Neural Variational Inference (SNVI). We
will show that our simulation-based inference methods are as accurate as SNLE and SNRE,
while being substantially faster at inference as they do not require MCMC sampling. To
deal with invalid outputs produced by simulators (e.g. infinities or NaNs) which cause
problems for some density estimation-based approaches, we introduce a calibration kernel
(Lueckmann et al., 2017) which can be used to exclude invalid data in SNVI, SNLE or
SNRE.

A recent method termed “Sequential Neural Posterior and Likelihood Approximation”
(SNPLA) also proposed to use variational inference (VI) instead of MCMC to speed up
inference in likelihood-targeting methods (Wiqvist et al., 2021). While this proposal is
related to our approach, their VI approach is based on the reverse Kullback Leibler (rKL)
divergence for learning the posterior. As we also show on benchmark tasks, this leads to
mode-seeking behavior which can limit its performance. In contrast, we show how this
limitation can be overcome through modifying the variational objective in combination
with using SIR for adjusting posteriors.
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After an introduction on traditional and recent simulation-based inference (SBI) methods
we introduce variational methods necessary for our work (Chapter 2). We then present
our method, Sequential Neural Variational Inference (SNVI) (Chapter. 3). In Chapter 4.2,
we empirically show that SNVI is significantly faster than state-of-the-art SBI methods
while achieving similar accuracy on benchmark tasks. In Chapter 4.3, we demonstrate
that SNVI is scalable and that it is robust to invalid simulation outputs: We obtain the
posterior distribution of a complex neuroscience model with one order of magnitude fewer
simulations than previous methods.

Our main contributions are as follows:

1. We introduce a general framework to use variational inference for obtaining the
posterior distribution in simulation-based inference.

2. We develop several variational inference methods that are tailored to the multi-
modality of posteriors often observed in simulation-based inference.

3. On several benchmark tasks, we show that our method performs on par with
MCMC, but give significant speedups. Further, we demonstrate that this opens up
new application fields inaccessible by competing methods.

4. We develop a new method to adjust for ‘calibration’ in likelihood-based methods.
This method is especially relevant when simulators produce invalid data, which
frequently occurs in scientific domains.

15





2. Background

Simulation-based inference (SBI) aims to perform Bayesian inference on statistical models
for which the likelihood function is only implicitly defined through a stochastic simulator.
Given a prior p(θ) and a simulator which implicitly defines the likelihood p(x|θ), the goal
is to identify the posterior distribution p(θ|xo) for any observation xo.

If the likelihood function is available, then the posterior can be obtained by Bayes’ rule:

p(θ|xo) =
p(xo|θ)p(θ)

Z
with Z =

∫
p(xo|θ)p(θ)dθ

Even though the evidence Z is typically intractable, we can sample from it with e.g. Markov-
chain Monte Carlo (MCMC) or obtain tractable approximations using e.g. variational
inference (VI) and related techniques (Bishop, 2006, Chapter 10 and 11). Yet if the
likelihood is unavailable, these methods cannot be applied directly.

In this chapter we will first discuss why simulation-based inference can often be considered
as likelihood-free (Sec. 2.1) and discuss both traditional and recent neural methods to
perform likelihood-free inference (Sec. 2.2). Next, we present recent advances in variational
inference which we will use to combine the best of both worlds, leading to our main
contribution: “Sequential Neural Variational Inference” presented in Chapter 3.

2.1. Is simulation-based inference likelihood-free?

An inference task is deemed likelihood-free if the likelihood function cannot be derived in
closed form or if the calculations are too expensive. To demonstrate that this is often the
case for SBI, we will first formalize the implicit likelihood defined by a simulator.

An simulation-based inference problem considers the following generative model

θ ∼ p(θ) and x = sz(θ) with z ∼ p(z|θ).

Above we denote the ‘simulator’ with sz and it’s parameters θ ∈ Θ. The parameters are
drawn from a prior distribution p(θ). The simulator produce observable data x ∈ X for
a given parameter θ. In essence, a simulator can be anything, but let’s assume it is a
complex stochastic algorithm. These typically use a random latent state z = (z1, . . . , zn)
with joint distribution

p(z|θ) = p(z1; f1(θ))p(z2; f2(z1,θ)) · · · p(zn; fn(z1, . . . , zn−1,θ))

17



Chapter 2. Background

i.e. the parameters of each latent state’s distribution are sequentially determined by a
mapping fi using all previous variables as input. Given the latent state the data x is
obtained through x ∼ p(x|z,θ). In practise, the corresponding densities are often not
made explicit but arise from using a random-number generator within the simulator.

Assuming that all distributions admit densities, the joint density of latent variables z
and observed data x is always tractable and given by p(x, z|θ) = p(x|z,θ)p(z|θ). The
likelihood of sz can thus be calculated by

p(x|θ) =

∫
p(x, z|θ)dz =

∫
p(x|z,θ)p(z|θ)dz = Ez∼p(z|θ)[p(x, z|θ)] (2.1)

This potentially high dimensional integral is generally intractable. However, if we have
complete knowledge about the latent state’s distribution p(z|θ) and p(x|z,θ), then
several methods become applicable. As the joint likelihood p(x, z|θ) = p(x|z,θ)p(z|θ)
is tractable we can perform inference on the joint space inferring p(θ, z|xo) using e.g.
MCMC (see e.g. Beaumont (1999) for application in genetics). We then obtain posterior
samples by marginalizing out z (i.e. drop z). On the other hand, if the joint space is
high dimensional this approach can become inefficient. Alternatively, Beaumont (2003)
proposed to use an unbiased likelihood estimator, which can be obtained by Monte Carlo
estimation of Equation 2.1. The algorithm was later generalized by Andrieu and Roberts
(2009) and is known as pseudo-marginal MCMC. We mainly consider variational methods,
which we further introduce in Sec. 2.3. Some variational Bayesian methods can also use
unbiased estimates of the likelihood (Tran et al., 2016; He et al., 2021) or of the log
likelihood’s gradient (Gunawan et al., 2017). Yet, the availability of these estimators
requires detailed knowledge about the latent states of the simulator.

Many domains of science have developed mechanistic simulator models. We focus on
applications in computational neuroscience (see e.g. Gonçalves et al. (2020), Deistler et al.
(2021), Schröder et al. (2019), West et al. (2021) or Oesterle et al. (2020)). Such mechanistic
models directly describe the causal process generating the observed data. Hence these
models are often based on biophysical equations using e.g. dynamical systems which
naturally evolve from our understanding of the system. Yet, these simulators typically
lag the mathematical abstraction as density models, making the above procedures not
applicable. Biological neural networks are also often constructed using external libraries
as e.g. NEURON (Hines and Carnevale, 2001). Hence we may not have access to the
internal working of the simulator at all.

For this reason we consider the simulator as black-box, that is we have no knowledge
about the internal workings (i.e p(z|θ) and p(x|z,θ)) but can collect samples x ∼ p(x|θ)
for any θ ∈ Θ by running the simulator. Such a general and flexible inference approach is
of high value in scientific domains since the user only needs to run the simulator without
having to abstract it into forms more amendable for inference.
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2.2. Methods to circumvent the likelihood

Algorithm 1: Rejection ABC
1 repeat
2 sample θ ∼ p(θ);
3 simulate x ∼ p(x|θ)

4 until ||x− xo|| ≤ ε;
5 return θ
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Figure 2.1.: Basic rejection ABC algorithm on the left side. One the right side the ABC
posterior and corresponding acceptance probabilities for θ ∼ N (θ; 0, 1),
x ∼ N (x;θ2, 1) and x0 = 2.

2.2. Methods to circumvent the likelihood

We will introduce traditional methods applicable for SBI in Subsec. 2.2.1 and Subsec.
2.2.2. Then introduce recent neural network-based methods which are particularly relevant
for our work in Subsec. 2.2.3.

2.2.1. Approximate Bayesian Computation (ABC)

The fundamental idea of Approximate Bayesian Computation goes back to Rubin (1984),
by the observation that we obtain samples from any posterior distribution by a simple
accept-reject method: Generate parameters θ from the prior p(θ), simulate synthetic data
x ∼ p(x|θ) and accept only those samples which are equal to the observation xo ∈ X . If
X is at most countable it is straightforward to show that the outcome from this algorithm
is an independent sample from the posterior:

pABC(θ|xo) ∝
∑
x∈X

1(x = xo)p(x|θ)p(θ) = P (x = xo|θ)p(θ) ∝ p(θ|xo)

However, if x is continuous the above procedure is ill-defined as the probability of an
exact match between simulated and observed data is zero. Pritchard et al. (1999) extend
the above algorithm to continuous spaces, by instead accepting any simulation that is
‘almost’ identical to the observed one. We can thus write a rejection ABC algorithm, as
shown in Alg. 1.

This relaxation produce samples not from the posterior distribution but from an approxi-
mation, which can be written as

pABCε (θ|xo) ∝
∫
kε(xo − x)p(x|θ)dxp(θ) = Ex∼p(x|θ) [kε(xo − x)] p(θ) (2.2)
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Chapter 2. Background

with kε(xo − x) ∝ 1(||xo − x|| ≤ ε). Although other choices of kernel kε are possible,
by instead accepting samples with probability proportional to kε(xo − x), where kε is
a well-chosen bounded kernel (i.e. an RBF kernel kε(xo − x) = exp(− 1

2ε ||xo − x||
2
2))

(Wilkinson, 2013). The exact posterior can be thought as limiting case if the kernel kε
satisfies limε→0 kε(xo−x) ∝ δ(xo−x)∗. Hence ε can be thought as parameter controlling
a trade off between approximation quality and computational efficiency as shown in
Fig. 2.1.

More efficient methods make use of MCMC and perturb previously accepted parameters,
which can be more likely to be accepted (Marjoram et al., 2003; Meeds et al., 2015). Or
use Sequential Monte Carlo samplers, which use importance sampling to sequentially
sample from more accurate posterior by gradually decreasing ε (Sisson et al., 2007).

Yet, the fundamental problem of any ABC algorithm is that it suffers from the curse of
dimensionality. The efficiency of Alg. 1 is determined by the probability of accepting an
proposed θ. The acceptance probability for an appropriate kernel kε can be estimated by

a(θ) =

∫
kε(xo − x)p(x|θ)dx ≈ p(xo|θ)

∫
kε(x)dx

for small ε assuming supx∈X kε(x) = 1 †. We can interpret the second term as an ‘volume
penalty’ for different choices of kernels. If we choose kε(x) = 1(||x||2 ≤ ε) and x ∈ Rd then∫
kε(x)dx = Γ(d/2 + 1)−1 (

√
πε)

d, whereas d denotes the dimensionality of x and Γ the
gamma function. Hence the acceptance probability for any ABC algorithm independent
of prior and simulator approaches zero at rate O(εd) for ε < 1/

√
π. As a consequence

ABC approaches require a careful design of kernel kε and low dimensional (sufficient)
summary statistics (Prangle, 2015; Pacchiardi et al., 2021).

2.2.2. Synthetic likelihood

ABC circumvents the likelihood to obtain approximate samples from the posterior distribu-
tion. In contrast, synthetic likelihood methods approximate the likelihood using repeated
simulations for a fixed θ (Wood, 2010; Price et al., 2018). The likelihood has an unknown
analytical form, but in some cases, it may be reasonable to assume that it belongs to a
certain parametric family. For example, if we observe an average of independent samples,
the central limit theorem suggest that the likelihood may be Gaussian:

p(x|θ) ≈ N (x;µ(θ),Σ(θ))

The functional form of the mean µ(θ) and covariance Σ(θ) is unknown, but we can use
the simulator to estimate them via Monte Carlo:

µ(θ) = Ex∼p(x|θ)[x] Σ(θ) = Ex∼p(x|θ)[(x− µ(θ))T (x− µ(θ))]

∗We use the Dirac delta function δ, a generalized function whose value is zero everywhere except at
zero and satisfies

∫
δ(x)dx = 1 and

∫
f(x)δ(x)dx = f(0).

†Consider kε(x) = 1(||x−xo|| ≤ ε), then a(θ) = P (||x−xo|| ≤ ε|θ). The density can be approximated
as the mass divided by the volume i.e. p(xo|θ) ≈ a(θ)/|Bε(xo)| thus also a(θ) ≈ p(xo|θ)|Bε(xo)|, whereas
|Bε(xo)| denotes the volume of the corresponding ε ball implied by kε.
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2.2. Methods to circumvent the likelihood

If the true likelihood is Gaussian then we obtain an unbiased likelihood estimate. Gener-
alizations for the non-Gaussian case exist e.g. by using kernel density estimation instead
(Gutmann et al., 2016). The constructed likelihood surrogate can then be used in MCMC
or variational methods to obtain samples from the approximate posterior (Ong et al.,
2017; Andrieu and Roberts, 2009).

Price et al. (2018) demonstrated that synthetic likelihoods can scale better to high
dimensional problems and are easier to tune than ABC. Yet, each evaluation of the
likelihood for different parameters θ requires running the simulator to obtain samples.
As most likelihood-based methods evaluate the likelihood many times, the number of
required simulations can become costly. Therefore it may be more efficient to learn a
functional approximation for µ(θ) and Σ(θ) from simulations. In other words to perform
conditional density estimation, leading to the next section.

2.2.3. Likelihood-free inference by density estimation

For a simulation-based model, we can easily produce samples from the joint distribution
p(x,θ) by producing parameters from a prior θ ∼ p(θ) then simulate it using the simulator
x ∼ p(x|θ). Unfortunately, we cannot evaluate the density p(x,θ) = p(x|θ)p(θ) =
p(θ|x)p(x), because we neither can evaluate the likelihood p(x|θ) nor p(θ|x). Yet, we can
estimate the conditional densities p(x|θ) (i.e. the likelihood) or p(θ|x) (i.e. the amortized
posterior) from pairs (x,θ) ∼ p(x,θ).

Recent deep neural density estimators admit good performance also among high-dimensional
problems (Papamakarios, 2019; Papamakarios et al., 2017; Durkan et al., 2019a). However,
density estimation at it’s core suffers from the curse of dimensionality (Papamakarios,
2019). In Fig. 2.2A we show a complex joint density. Conditional density estimation
of p(θ|x) corresponds to learn all horizontal slices. Estimating p(x|θ) corresponds to
learn all vertical slices. A global estimate is clearly challenging, and we may have to
run many ‘simulations’ in order to do so. Yet, to identify the posterior distribution
p(θ|xo) ∝ p(xo|θ)p(θ) we only require an estimate of the conditional densities at the
observation xo. This allows to simplify the corresponding problem by instead proposing
(θ,x) ∼ p̃(x,θ) for which x ≈ xo. There are two major strategies to enforce this property:

Sequential methods: We can propose parameters θ which likely produce simulation
similar to the observation. A good choice would be p̃(θ) = p(θ|xo), which strongly
simplifies the corresponding density estimation problem as illustrated in Fig. 2.2B (it
focus the estimation problem on relevant regions in parameter space). In practice, this is
not possible as the posterior is unavailable, yet it motivates many methods particularly
relevant for our work (Papamakarios and Murray, 2016; Lueckmann et al., 2017; Greenberg
et al., 2019; Papamakarios et al., 2019; Wiqvist et al., 2021; Hermans et al., 2020; Durkan
et al., 2020a). Instead of the true posterior, these methods use a posterior approximation,
which is sequentially refined over multiple rounds. As shown in Fig. 2.2B methods that
target the likelihood are unaffected by this modification (Papamakarios et al., 2019).
Conversely, direct posterior estimation methods are affected, but several methods exist to
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Figure 2.2.: The joint density is shown in the center. On the top the normalized posterior
(i.e. the red horizontal slice). On the left the normalized likelihoods (i.e. vertical
slices in brown and magenta).A shows it for p(x,θ) where θ ∼ N (0, 1) and
p(x|θ) = 0.5(N (x;θ3, I)+N (x;−θ3, 1)). B shows it for p̃(x,θ) = p(x|θ)p̃(θ)
with p̃(θ) = p(θ|xo). C shows it for p̃(x,θ) = K(x,xo)p(x|θ)p̃(θ) with
calibration kernel K(x,xo) = exp(−1/2ε||x− xo||2) for ε = 0.1.

correct for this bias (Papamakarios and Murray, 2016; Lueckmann et al., 2017; Greenberg
et al., 2019). Nonetheless, these corrections can come with problems e.g. high variance
due to importance weights or density leakage (Durkan et al., 2020b; Lueckmann et al.,
2017). This excludes the usage of SNPE for the certain relevant application, as we
will demonstrate in Sec. 4.3. Lueckmann et al. (2021) demonstrated empirically that
‘sequential’ methods can strongly increase the simulation efficiency which is particularly
relevant for computationally expensive simulators often encountered in scientific domains.

Calibration: Alternatively we can discard simulations (θ,x) if x differs from the
observation. This does not increase the simulation efficiency as it is applied after simulation
but does simplify the density estimation problem as demonstrated in Fig. 2.2C (it focus the
estimation problem on relevant regions in data space). Lueckmann et al. (2017) introduced
this technique using a calibration kernel in SNPE and proofed that calibration does not
affect direct posterior estimation. The loss is thereby weighted by a calibration kernel
K(x,xo) which measures the similarity between x and xo (e.g. similar to an ABC kernel).
Additionally, calibration can solve the ubiquitous problem that scientific simulators, when
fed with unrealistic parameters, often return invalid outputs. These invalid simulations are
not useful to accurately learn the likelihood/posterior and we would like to exclude them
e.g. by setting K(x,xo) = 0 if x is invalid. Yet as visualized in Fig. 2.2C this does affect
methods that estimate the likelihood. Current likelihood-based methods can thus not be
applied to such problems and no correction strategy was developed yet. We will derive
the exact bias-factor that emerges from calibration and include an efficient correction
procedure within our method in Chapter 3.
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2.3. Variational inference

Our method focus on improving likelihood-estimation (SNLE) and likelihood-ratio-
estimation (SNRE) methods. SNLE trains a deep neural density estimator `ψ(x|θ) by
minimizing the forward Kullback-Leibler divergence (fKL) between `ψ(x|θ) and p(x|θ)
using samples (x,θ) ∼ p̃(x,θ) = p(x|θ)p̃(θ) from the simulator,

L(ψ) = DKL(p(x|θ)p̃(θ)||`ψ(x|θ)p̃(θ)) = − 1

N

N∑
i=1

log `ψ(xi|θi) + const .

Here, `ψ(x|θ) is a conditional density estimator learning the conditional density p(x|θ)
from (θ,x) pairs, ψ are its learnable parameters, and p̃(θ) is the proposal distribution
from which the parameters θ are drawn e.g. a previous estimate of the posterior or by an
active learning scheme (Papamakarios et al., 2019; Lueckmann et al., 2019a). Analogously,
SNRE uses a discriminator, e.g. a deep logistic regression network, to estimate the density
ratio (Hermans et al., 2020; Durkan et al., 2020a),

r(x,θ) =
p̃(x,θ)

p̃(x)p̃(θ)
=
p(x|θ)

p̃(x)
.

If the proposal is given by the prior, then one can recover the exact posterior density,
otherwise the posterior can be recovered up to a normalizing constant (Durkan et al.,
2020a). Once the likelihood (or likelihood-ratio) has been learned, the posterior can be
sampled with MCMC. In sequential schemes, the proposal p̃ is updated each round using
the current estimate of the posterior – thus, computationally expensive MCMC sampling
needs to be run in each round∗. Our method exactly aims to improve this bottleneck with
variational methods as described in the next section.

2.3. Variational inference

Inference in probabilistic models if often infeasible, even if the likelihood is tractable.
Variational inference formulates an optimization problem over a class of tractable distri-
butions Q to find parameters φ∗ such that qφ∗ ∈ Q is closest to the true posterior p(θ|xo)
according to some divergence D (Blei et al., 2017). Formally,

φ∗ = arg min
φ

D(qφ(θ)||p(θ|xo))

with qφ∗(θ) = p(θ|xo) ⇐⇒ D(qφ∗(θ)||p(θ|xo)) = 0. Recent work has introduced normal-
izing flows as a variational family for VI (Ranganath et al., 2014; Agrawal et al., 2020;
Rezende and Mohamed, 2015). Normalizing flows define a distribution qφ(θ) by learning a
bijection Tφ which transforms a simpler distribution q0 into a complex distribution p(θ|xo).
Normalizing flows provide a highly flexible variational family, while at the same time
allowing low variance gradient estimation of an expectation by the reparameterization

∗Parts of the paragraph are currently under review for publication and hence revised by Michael
Deistler and Jakob Macke (see https://openreview.net/forum?id=kZ0UYdhqkNY).
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Chapter 2. Background

trick, i.e. ∇φEθ∼qφ [f(θ)] = Eθ0∼q0 [∇φf(Tφ(θ0))] with θ = Tφ(θ0) (Kingma and Welling,
2014a; Rezende et al., 2014; Rezende and Mohamed, 2015) *.

After running SNLE a likelihood surogate `ψ is available and thus the unnormalized pos-
terior can be approximated p(xo,θ) ≈ `ψ(xo|θ)p(θ). This renders Black-Box-Variational-
Inference (BBVI) methods tractable (Ranganath et al., 2014; Agrawal et al., 2020). In this
section, we will briefly introduce the main ideas used within our method. We introduce
relevant divergence families in Subsec. 2.3.1, Monte Carlo refininments in Subsec. 2.3.2
and discuss improved gradient estimators in Subsec. 2.3.3.

2.3.1. Divergence measures

The choice of divergence measure D can have a major impact on the resulting variational
approximation. We typically distinguish between mode-seeking and mass-covering diver-
gences. A mode-seeking divergence emphasizes modeling the tails instead of the bulk of
the distribution e.g. a Gaussian approximation of a mixture of Gaussians will try to fit
the single component with the largest variance. In contrast, a mass-covering divergence
will try to stretch the approximation across all components. Within this section, we will
quickly introduce two divergence families particularly relevant for our work.

The Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951) between qφ(θ) and
p(θ|xo) is given by

DKL(qφ||p) =

∫ ∞
−∞

qφ(θ) log

(
qφ(θ)

p(θ|xo)

)
dθ = Eθ∼qφ

[
log

(
qφ(θ)

p(θ|xo)

)]
.

The divergence is not symmetric. We distinguish between the reverse KL (rKL) divergence
DKL(qφ||p) and the forward KL divergence (fKL) DKL(p||qφ), as they inherit vastly
different properties. Classically VI minimizes the reverse KL divergences, by maximizing
the ELBO (Blei et al., 2017) a lower bound to the evidence log p(x):

LrKL(φ) = Eθ∼qφ [log p(xo,θ)− log qφ(θ)] = log p(x)−DKL(qφ||p)

This is convenient as the ELBO only involves a expectation with respect to qφ, which is
chosen to be tractable. In contrast the forward KL minimizes

LfKL(φ) = Eθ∼p [log p(θ|xo)− log qφ(θ)] = −Eθ∼p [log qφ(θ)] + const.

which involves a expectation with respect to the intractable posterior distribution. We
discuss in Sec. 3.2 how we can obtain a efficient approximation to avoid this problem.

The reverse KL enforces qφ(θ) = 0, whenever p(θ|xo) = 0, leading to a mode seeking
behaviour. In contrast the forward KL enforces qφ(θ) > 0, whenever p(θ|xo) > 0 inducing
a mass-covering property. We demonstrate this behavior in Figure 2.3 A, B. Even if the
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Figure 2.3.: Results of KL divergence minimization using stochastic gradient descent
(SGD). The red line illustrates the SGD path, with the starting point marked
by an ×. We show in A results using a Gaussian variational family with
unknown mean µ and scale σ. In B we show results using a mixture of
Gaussians with unknown means µ1, µ2 as variational family.

variational family can represent a bimodal target, a stochastic gradient descent algorithm
that minimizes the reverse KL divergence will likely only cover one. As illustrated this is
because every qφ that occupies a mode of p represents a sharp local minimum, in which
SGD can get ‘stuck’, hence initialization of the parameters heavily affect the result. On
the contrary, the forward KL divergence shows broad global minimas and SGD can easily
find the global minimum. Thus, we should prefer the forward KL when the posterior has
multimodal structure and the variational family is sufficiently flexible.

Rényi’s alpha divergence

There exists many α-divergence definitions, yet we focus on Rényi’s definition (Rényi
et al., 1961). For some α ∈ {α|α > 0, α 6= 1, |Dα| <∞} and is given by

Dα(qφ||p) =
1

α− 1
log

∫
qφ(θ)αp(θ|xo)1−αdθ

which can be extended to α = 0, 1,+∞ by continuity.

This family contains several well-known divergences as a special case. To name some
examples, for α = 0.5 we obtain a function of the square Hellinger distance. For α = 2 a
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Algorithm 2: SIR (Sampling Importance Resampling)
1 Input: K the number of importance samples , proposal qφ.
2 for i ∈ [1, ...,K] do
3 θi ∼ qφ(θ)

4 wi = p(xo,θi)
qφ(θi)

5 end
6 Each w̃i = wi/

∑K
k=1wi

7 j ∼ Categorical(w̃)
8 return θj

function proportional to the χ2-divergence. And for α→ 1 we retain the KL divergence
(Li and Turner, 2016).

In contrast to the KL divergence the difference between Dα(p||qφ) and Dα(qφ||p) is
less important as Dα is skew symmetric for any α /∈ {0, 1} we have that Dα(p||q) =
α

1−αD1−α(q||p). Hence a ‘forward’ divergence can be related to a ‘reverse’ divergence
up to a multiplicative constant. Yet α-divergences allow to tune the mass-covering or
mode-seeking behaviour based on the hyperparameter α (Li and Turner, 2016).

2.3.2. Monte Carlo objectives and sampling

Recent progress in deep latent variable models as the Variational Autoencoder (VAE)
(Kingma and Welling, 2014b), involves producing tighter evidence lower bounds through
Monte Carlo techniques. This is because VAEs use the bound as a surrogate for the
evidence (i.e. the log marginal likelihood) to train the generative model. Hence a tighter
bound is always better. Burda et al. (2016) introduced a simple way to tighten the bound
by averaging over multiple samples resulting in an importance sampling estimate of the
evidence i.e.

log p(xo) ≥ L(K)
IW (φ) = Eθ1,...,θK

[
log

(
1

K

K∑
k=1

p(xo,θ)

qφ(θ)

)]
≥ LrKL(φ)

As K → ∞, also L(K)
IW (φ) → log p(xo) with L(K+1)

IW (φ) ≥ L(K)
IW (φ) (Burda et al., 2016).

However, to drive qφ towards the true posterior we are not necessarily interested in the
tightness of the bound. In fact, tighter bounds can be harder to optimize. If L(φ)→ log p(x)
then respectively also ∇φL(φ) → 0 as the evidence is independent of φ, indicating a
vanishing gradient (Rainforth et al., 2018). We will consider a potential solution for this
problem in the next subsection.

Cremer et al. (2017) presents a reinterpretation, which motivates the usage in VI as
well. Instead of driving qφ toward p, maximizing the IW-ELBO can be interpreted to
instead drive q(K)

SIR towards p. Thereby q(K)
SIR denotes a nonparametric density obtained by

26



2.3. Variational inference

p - target
q1
q2

SIR overdispersed q
Samples q1
SIR adjusted

SIR underdispersed q
Samples q2
SIR adjusted

10 5 0 5 10

p - target
q1
q2

10 5 0 5 10

Samples q1
SIR adjusted

10 5 0 5 10

Samples q2
SIR adjusted

Figure 2.4.: SIR with either overdispersed or underdispersed proposals q and fixed number
of proposals K = 32.

Sampling Importance Resampling (SIR) with qφ as proposal (Rubin, 1988). We describe
SIR in Alg. 2, it can be interpreted as a Monte Carlo technique to obtain samples from the
posterior distribution as K →∞ independent of qφ (Rubin, 1988; Cremer et al., 2017).
Maximizing the IW-ELBO can thus be interpreted to directly optimize qφ for parameters
that will perform well with using SIR. Agrawal et al. (2020) demonstrated empirically
that SIR after VI can generally improve performance and never hurts.

We demonstrate the capabilities of SIR in Figure 2.4. Indeed it can both enrich and
refine variational approximations. Notably, the quality of SIR-adjusted samples strongly
depends on the proposal. It is especially important that the proposal covers most of the
mass of the target since too narrow proposals show only marginally improved results. As
a result, SIR is expected to especially improve mass-covering variational approximations.

2.3.3. Improved gradient estimation

In black-box VI we estimate the gradient via Monte Carlo estimation. Yet the variance of
gradient estimators can become too large to be useful. Particularly estimators with a small
expected gradient require a proportionally smaller variance. We can measure this property
by the signal-to-noise ratio (SNR), defined as the absolute expected gradient estimate
divided by its standard deviation. A low SNR is always problematic as it indicates that
the gradient estimate is dominated by noise.

Be H(φ) = −Eθ∼qφ [log qφ(θ)] the entropy of qφ, then the gradient of the ELBO can
be written as ∇φLrKL(φ) = ∇φEθ∼qφ [p(xo,θ)] +∇φH(φ) (similar for other objectives).
Using the reparameterization trick θ = Tφ(θ0), we can expand the total derivative of the
entropy:

∇φH(φ) = −Eθ0∼q0 [∇φ log qφ(Tφ(θ0))]

= −Eθ0∼q0 [∇θ log qφ(θ)∇φTφ(θ0)]− Eθ∼qφ [∇φ log qφ(θ)]
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The second term is known as the ‘score function’, which is zero in expectation. We can
therefore remove it and still obtain an unbiased estimate. This can be achieved by holding
φ constant under the gradient i.e. ∇φH(φ) = −∇φEθ∼qφ [log qκ(θ)] with κ = φ. The new
“Sticking the Landing” (STL) estimator has the desirable property that as qφ approaches
p the variance goes to zero (Roeder et al., 2017). In contrast the score function component
is not necessarily zero for any finite sample approximation, hence the full estimator has
non-zero variance even if qφ = p.

A related estimator for unbiased gradient estimation on different Monte Carlo objectives
was introduced by Tucker et al. (2018). In this situation, the STL can introduce some
bias. But more prominently both estimators can stabilize the SNR on objectives that
otherwise suffer from a vanishing SNR. In which case the STL estimator shows a slightly
better performance (Roeder et al., 2017; Tucker et al., 2018; Rainforth et al., 2018). In
general, both show slight improvements for VI also using normalizing flows as variational
family (Agrawal et al., 2020).

28



3. Sequential Neural Variational
Inference ∗

We introduce the general “Sequential Neural Variational inference” (SNVI) algorithm in
Sec. 3.1. We then list variational objectives we found to excel on SBI problems in Sec.
3.2 and elaborate possible extensions to refine the approximate posterior estimate using
Sampling Importance Resampling (SIR, Sec. 3.3). Last but not least, we introduce a
method to use calibration within likelihood-based methods which is especially relevant if
the simulator produces invalid data (Sec. 3.4).

3.1. Key ingredients

We propose a framework to use variational inference (VI) for simulation-based inference.
Our method consists of three parts: A learnable likelihood (or likelihood-ratio) model,
a posterior model (typically parameterized as a normalizing flow, we discuss similar
expressive alternatives in Appendix Sec. A.8) to be learned with VI, and sampling
importance resampling (SIR) (Rubin, 1988) to refine the accuracy of the posterior
(Fig. 1.1). The likelihood(-ratio) model `ψ(x|θ) learns to approximate the likelihood
p(x|θ) or the likelihood-ratio p(x|θ)

p(x) from pairs of parameters and simulation outputs
(θ,x). We use the term SNLVI to refer to SNVI with likelihoods, and SNRVI with
likelihood-ratios. After a likelihood(-ratio) model has been trained, the posterior model
qφ(θ) is trained with variational inference using normalizing flows. Finally, SIR is used
to correct potential inaccuracies in the posterior qφ(θ) – as we will show below, the SIR
step leads to empirical improvements at modest computational overhead.

To refine the likelihood(-ratio) model and the posterior, the procedure can be repeated
across several ‘rounds’. We opt to sample the parameters θ from the previous posterior
estimate qφ(θ), but other strategies for active learning (e.g. Lueckmann et al., 2019b)
could be plugged into SNVI. The algorithm is summarized in Alg. 3. We will now describe
three variational objectives that can be used with SNVI, the SIR procedure to refine the
posterior, and a calibration kernel for dealing with invalid simulation outputs.

∗Parts of this chapter are currently under review for publication and hence revised by Michael Deistler
and Jakob Macke (see https://openreview.net/forum?id=kZ0UYdhqkNY).
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Chapter 3. Sequential Neural Variational Inference

Algorithm 3: SNVI
1 Inputs: prior p(θ), observation xo, divergence D, simulations per round N , number

of rounds R, selection strategy S.
2 Outputs: Approximate likelihood `ψ and variational posterior qφ.
3 Initialize: Proposal p̃(θ) = p(θ), simulation dataset X = {}
4 for r ∈ [1, ..., R] do
5 for i ∈ [1, ..., N ] do
6 θi = S(p̃, `φ, p) ; // sample θi ∼ p̃(θ)
7 simulate xi ∼ p(x|θi) ; // run the simulator on θi
8 add (θi,xi) to X
9 end

10 (re-)train `ψ; ψ∗ = arg minψ − 1
N

∑
(xi,θi)∈X log `ψ(xi|θi) ; // or SNRE loss

11 (re-)train qφ; φ∗ = arg minφD(qφ(θ)||p(θ|xo)) with

p(θ|xo) ∝ p(xo|θ)p(θ) ≈ `ψ∗(xo|θ)p(θ)

12 p̃(θ) = qφ(θ)

13 end

3.2. Variational objectives for SBI

Because of the expressiveness of normalizing flows, the true posterior can likely be
approximated well by a member of the variational family (Papamakarios et al., 2021).
Thus, the quality of the variational approximation is strongly linked to the ability to
achieve the best possible approximation through optimization, which in turn depends on
the choice of variational objective (or divergence) D. Using the reverse Kullback-Leibler
Divergence (rKL) as proposed by Wiqvist et al. (2021) can give rise to mode-seeking
behavior and qφ might not cover all regions of the posterior (Bishop, 2006; Blei et al.,
2017).

Therefore, some regions in parameter space might be left and consequently, the likelihood
within these regions will be poorly approximated as well. As a complementary approach,
we suggest and evaluate three alternative variational objectives that induce a mass-
covering behavior and posit that this strategy will be particularly important in sequential
schemes.

1. Forward KL divergence (fKL) In contrast to the reverse KL (rKL), the forward
Kullback-Leibler divergence (fKL) is mass-covering (Bishop, 2006). Wan et al. (2020)
minimize the following upper bound to the evidence, which implicitly minimizes the
fKL: L(φ) = Eθ∼qφ [w(θ) log (w(θ))] with w(θ) = p(xo,θ)/qφ(θ). This expression is hard
to estimate with samples: If qφ(θ) is different from p(xo,θ) then w(θ) ≈ 0 for most
θ ∼ qφ(θ), thus ∇φL(φ) ≈ 0, which would prevent learning (see Appendix Sec. A.1).
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3.2. Variational objectives for SBI

To overcome this problem, we rewrite the fKL using self-normalized importance sampling
(Jerfel et al., 2021). Let θ1, . . . ,θN ∼ π be samples from an arbitrary proposal distribution
π. We then minimize the loss:

LfKL(φ) = DKL(p||qφ) ≈
N∑
i=1

w(θi)∑N
j=1w(θj)

log

(
p(xo,θi)

qφ(θi)

)
where w(θ) = p(xo,θ)/π(θ). The corresponding gradient estimator can be written as

∇φLfKL(φ) = −Eθ∼p [∇φ log (qφ(θ))] ≈ −
N∑
i=1

w(θi)∑N
j=1w(θj)

∇φ log qφ(θi)

As a self-normalized importance sampling scheme, this estimate is biased, but the bias
vanishes at rate O(1/N) (Hesterberg, 2003). In our experiments, we use π = qφ, which
provides a good proposal when qφ is close to p (Chatterjee and Diaconis, 2018). Even
though qφ will differ from p initially, sufficient gradient information is available to drive
qφ towards p, as we demonstrate in Appendix Sec. A.1.

2. Importance weighted ELBO The importance weighted ELBO (IW-ELBO) intro-
duced by Burda et al. (2016) uses the importance-weighted gradient of the evidence lower
bound (ELBO). It minimizes the KL divergence between the self-normalized importance
sampling distribution of qφ and the posterior and thus provides a good proposal for sam-
pling importance resampling (Cremer et al., 2017; Domke and Sheldon, 2018; Ranganath
et al., 2014). It can be formulated as

L(K)
IW (φ) = Eθ1,...,θk∼qφ

[
log

1

K

K∑
k=1

p(xo,θk)

qφ(θk)

]
.

Using the reparameterization trick an unbiased gradient estimator is given by

∇φL
(K)
IW (φ) = Eθ1,...,θK∼qφ

[
K∑
k=1

w̃(θk)∇φ log

(
p(xo,θk)

qφ(θk)

)]
w̃(θk) =

w(θk)∑K
j=1w(θj)

To avoid a low SNR of the gradient estimator (Rainforth et al., 2018), we use the ‘Sticking
the Landing‘ (STL) estimator introduced by Roeder et al. (2017).

3. Rényi α-divergences Rényi α-divergences are a divergence family with a hyperpa-
rameter α which allows to tune the mass-covering (or mode-seeking) behaviour of the
algorithm. For α → 1, the divergence approaches the rKL. For α < 1, the divergence
becomes more mass-covering, for α > 1 more mode-seeking. We use α = 0.1 in our
experiments. A Rényi variational bound was established by Li and Turner (2016) and is
given by

Lα(φ) =
1

1− α
log

(
Eθ∼qφ

[(
p(xo,θ)

qφ(θ)

)1−α
])

.
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If |L(α)| <∞ any naive Monte Carlo estimator with K <∞ samples will be biased. Yet
the bias is well-behaved in the sense that for α ≤ 1

LrKL = E{θi}1i=1
[L(1)
α ] ≤ · · · ≤ E{θi}Ki=1

[L(K)
α ]→ Lα as K →∞ almost surely,

where LrKL is the ELBO. Consequently the bound is biased towards the reveres KL-
divergence, but the approximation quality can be improved using more samples (Li and
Turner, 2016). By the reparameterization trick a biased gradient estimate is given by

∇φLα(φ) = Eθ∼qφ

[
w̃α(θ)∇φ log

(
p(xo,θ)

qφ(θ)

)]
w̃α =

w(θ)1−α

Eθ∼qφ [w(θ)1−α]
.

For α = 0, Lα is a single sample Monte Carlo estimate of the IW-ELBO (when using
K samples to estimate the expectation in Lα(φ)) and thus also suffers from a low SNR
as α → 0 (Rainforth et al., 2018; Li and Turner, 2016). Just as for the IW-ELBO, we
alleviate this issue by combining the α-divergences with the STL estimator.

3.3. Sampling Importance Resampling

After the variational posterior has been trained, qφ approximates `ψ(xo|θ)p(θ)/Z with nor-
malization constant Z. We propose to improve the quality of posterior samples by applying
Sampling Importance Resampling (SIR) (Rubin, 1988). We sample K = 32 samples from
θ ∼ qφ(θ), compute the corresponding importance weights wi = `ψ(xo|θi)p(θi)/qφ(θi)
and resample a single sample from a categorical distribution whose probabilities equal
the normalized importance weights. The algorithm is detailed in Alg. 2.

This strategy enriches the variational family with minimal computational cost (Agrawal
et al., 2020). SIR is particularly useful when qφ(θ) covers the true posterior and is thus
well-suited for the objectives described above. See Fig. A.2 which demonstrates that SIR
can reliably refine the posterior approximation, even using expressive normalizing flows.

3.4. Calibration kernel for dealing with invalid data

Simulators may produce unreasonable or undefined values (Lueckmann et al., 2017), as
we will also see in the pyloric network model described later. To deal with the resulting
‘missing’ simulations, we introduce a calibration kernel K(x,xo) (Lueckmann et al., 2017)
for loss-reweighing of the likelihood(-ratio) model. When using SNLVI, we use the loss

L(ψ) = −Eθ,x∼p̃(θ,x)[K(x,xo) log(`ψ(x|θ))],

where K(x,xo) is a kernel which allows the likelihood-model to focus on a specific
region in data-space. However, unlike for posterior estimation methods (Lueckmann
et al., 2017), this kernel biases the estimated likelihood (Appendix Sec. A.4). Indeed we
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obtain `ψ∗(x|θ) = 1
Z(θ)K(x,xo)p(x|θ) with Z(θ) = Ep(x|θ)[K(x,xo)] as minimizer (see

Appendix Lemma A.3). As a result the implied posterior is biased by a factor of Z(θ)−1.

To exclude invalid simulations we use the kernel K(x,xo) = 1(x is valid), hence Z(θ) =
P (x is valid|θ). Without any correction the learned likelihood-function will be biased
towards parameter regions which often produce ‘invalid’ simulations. This prohibits any
method that estimates likelihood(-ratio) (i.e. SNVI, SNLE, SNRE) from excluding ‘invalid’
simulations, and thus prohibit their use on simulators which produce such data. Also
other choices of kernels can be beneficial i.e. by using an ABC kernel kε (see Subsec. 2.2.1)
we can focus on especially relevant regions in data-space. We discuss this relation to ABC
methods in Sec. A.5.

We overcome this bias by estimating Z(θ) with a feed-forward neural network cζ(θ),
allowing us to recover the posterior distribution p(θ|xo) up to proportionality. After
`ψ(x|θ) and cζ(θ) are trained, we sample from the (unnormalized) posterior distribution

P(θ) = `ψ∗(xo|θ)p(θ)cζ∗(θ) ∝ p(xo|θ)p(θ) ∝ p(θ|xo)

with VI in combination with SIR (details, proof and extension to SNRVI in Appendix
Sec. A.4). We show the SNVI algorithm with calibration in Alg. 4.
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4. Results ∗

We demonstrate the accuracy and the computational efficiency of SNVI on several
examples. First, we apply SNVI to an illustrative example to demonstrate its ability to
capture complex posteriors without mode-collapse (Sec. 4.1). Second, we compare SNVI
to alternative methods on several benchmark tasks (Sec. 4.2). Third, we demonstrate in
Sec. 4.3 that SNVI can obtain the posterior distribution in models with many parameters
by applying it to a neuroscience model of the pyloric network in the crab Cancer borealis.

4.1. Illustrative example: Two moons

We use the ‘two moons’ simulator (Greenberg et al., 2019) to illustrate the ability of SNVI
to capture complex posterior distributions. The two moons simulator has two parameters
with a uniform prior and generates a posterior that has both local and global structure.
Fig. 4.1A shows the ground truth posterior distribution as well as approximations learned
by several methods using 105 simulations.

SNLE with MCMC (in the form of Slice Sampling with axis-aligned updates (Neal, 2003))
can recover the bimodality when running 100 chains in parallel (Lueckmann et al., 2021)
(not shown: individual chains typically only explore a single mode). SNPLA, which is
based on the mode-seeking rKL (and could thus also be considered as SNVI+rKL, see
Appendix Sec. A.6) captures only a single mode. In contrast, SNLVI (using the fKL
and SIR, denoted as SNVI+fKL) recovers both the local and the global structure of the
posterior accurately. In terms of runtime, SNPLA and SNVI+fKL are up to twenty times
faster than 100 chain MCMC in our implementation (Fig. 4.1B), and two to four orders of
magnitude faster than single chain MCMC (single chain not shown, the relative speed-up
for multi-chain MCMC is due to vectorization).

4.2. Results on benchmark problems

We compare the accuracy and computational cost of SNVI to that of previous methods,
using SBI benchmark tasks (Lueckmann et al., 2021):

Bernoulli GLM: Generalized linear model with Bernoulli observations. Inference is
performed on 10-dimensional sufficient summary statistics of the originally 100 dimensional
raw data. The resulting posterior is 10-dimensional, unimodal, and concave.

∗Parts of this chapter are currently under review for publication and hence revised by Michael Deistler
and Jakob Macke (see https://openreview.net/forum?id=kZ0UYdhqkNY).
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sA B

Figure 4.1.: A Posterior approximations of SNLE, SNPLA, and SNVI+fKL for the two
moons benchmark example. B Runtime of all algorithms.

Lotka Volterra: A traditional model in ecology (Wangersky, 1978), which describes a
predator-prey interaction between species, illustrating a task with complex likelihood and
unimodal posterior.

Two moons: Same as described in the previous section.

SLCP: A task introduced by Papamakarios et al. (2019) with a simple likelihood and
complex posterior. The prior is uniform, the likelihood has Gaussian noise but is nonlinearly
related to the parameters, resulting in a posterior with four symmetrical modes.

For each task, we perform inference for ten different runs, each with a different observation.
As performance metric, we used classifier 2-sample tests (C2ST) (best is 0.5, worst is 1.0)
(Friedman, 2004; Lopez-Paz and Oquab, 2017). For each method, we perform inference
given a total of 103, 104 and 105 simulations, evenly distributed across ten rounds of
simulation and training. Details on the hyperparameters are provided in Appendix Sec. A.7,
details on results in Appendix Fig. A.7.

We show results for two reference methods, SNLE with MCMC sampling, and SNPLA,
and compare them to three variants of SNVI using the forward KL (SNVI+fKL), the
importance-weighted ELBO (SNVI+IW) as well as an alpha-divergence (SNVI+α). We
find that all three SNVI-variants achieve performance comparable to MCMC across all
four tasks (Fig. 4.2 A-D, left), and outperform SNPLA on the two tasks with multi-
modal posteriors (Two moons and SLCP). We find that omitting the SIR-adjustment
(dotted lines) leads to a small but consistent degradation in inference performance for all
SNVI-variants, but not for SNPLA with the rKL: When using the rKL, the approximate
posterior qφ is generally narrower than the posterior and thus ill-suited for SIR. See
Appendix Fig. A.2 for demonstration on an ‘two moons’ posterior. Qualitatively similar
results were found when using likelihood-ratio approaches with the same hyperparameters,
see Appendix Fig. A.5. We compare alternative estimation methods of the proposed
objectives in Appendix Fig. A.6, which demonstrates that self-normalization or the STL
estimator is necessary for the proposed objectives to achieve the presented accuracy.

In terms of runtime, all three variants of SNLVI are substantially faster than SNLE
on every task (bars in Fig. 4.2 on the right), in some cases by more than an order of
magnitude. When using likelihood-ratio estimation, MCMC with 100 chains can be as
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Figure 4.2.: C2ST benchmark results for SNVI for four models, Bernoulli GLM (A), Lotka
volterra (B), Two moons (C) and SLCP (D). Each point represents the
average metric value for ten different observations, as well as the confidence
intervals. Bars on the right indicate the average runtime. Two reference
methods: SNLE with MCMC sampling, and SNPLA (which uses rKL), as
well as three variants of SNVI, with forward KL (SNVI+fKL), importance-
weighted ELBO (SNVI+IW) and α-divergence (SNVI+α). Dotted lines:
Performance when not using SIR.

fast as SNRVI on tasks with few parameters (Appendix Fig. A.5). On tasks with many
parameters, however, SNRVI is significantly faster than SNRE (see e.g. Bernoulli GLM
with 10 parameters). This can be attributed to the fast forward pass in SNR (classifier vs.
normalizing flow) which majorly benefits MCMC.

We discuss results obtained for mixture distributions as alternative variational family in
Appendix Fig. A.9. In general this family can be computationally more efficient when using
Mixture of Gaussians in combination with the fKL estimator. Yet the limited expressiveness
does affect the performance. Aside from that reparameterization is complicated in mixture
distributions, making SNPLA, SNVI+IW and SNVI+α inefficient. See Appendix Sec. A.8
for more details.

The benchmark problems do not produce invalid data, so we did not benchmark calibration
in this case. Nonetheless, we still can calibrate the likelihood using an ABC kernel, see
Appendix Fig. A.3 for a proof of concept.

37



Chapter 4. Results

F

C

0 8

0 15

10 2 104

10 2 103

0 8

0 15

10 2 104

10 2 103

0

0 Time [h]

Posterior mean/mapMean MAP

13

G

BA

D E

PY

LP

AB/PD

PY

LP

AB/PD
AB/PD  CaS

AB/PD  CaT

AB LP

PD LP

AB/PD  CaS

AB/PD  CaT

AB LP

PD LP

SNVI+fKL

Empricial observation

SNLE

Prior

Posterior

1% 'valid'

94% 'valid'

Median ||x - xo||2 3

Figure 4.3.: (A) Empirical observation, arrows indicate some of the summary statistics.
Scale bar is one second. (B) Cornerplot showing a subset of the marginal and
pairwise marginal distributions of the 31-dimensional posterior (full posterior
in Appendix Fig. A.10). Red dot: MAP. Black dot: Posterior mean. (C)
Conditional distributions p(θi,j |x,θ6=i,j). Green dot shows the sample on
which we condition. (D) Simulated traces from the posterior mean and MAP.
(E) Simulated traces of three posterior samples. (F) Posterior predictive
and prior predictive median (z-scored) distances from the observation. (G)
Time required to obtain 10k samples: SNVI takes 11 minutes and SNLE with
100-chain MCMC 808 minutes, i.e. over 13 hours.

4.3. Inference in a neuroscience model of the pyloric network

Finally, we applied SNVI to a simulator of the pyloric network in the stomatogastric
ganglion (STG) of the crab Cancer Borealis, a well-characterized circuit producing
rhythmic activity. The model consists of three model neurons (each with eight membrane
conductances) with seven synapses (31 parameters in total) and produces voltage traces
that can be characterized with 15 established summary statistics (Prinz et al., 2003; 2004).
In this model, disparate parameter sets can produce similar activity, leading to a posterior
distribution with broad marginals but narrow conditionals (Prinz et al., 2004; Gonçalves
et al., 2020). Previous work has used millions of simulations from prior samples and
performed amortized inference with NPE (18 million simulations in Gonçalves et al. (2020),
9 million in Deistler et al. (2021)). Sequential neural posterior estimation (SNPE) struggles
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on this problem due to leakage, whereas SNLE and SNRE with MCMC are inefficient
(Durkan et al., 2020a). Here, we apply SNVI to identify the posterior distribution given
an extracellular recording of the stomatogastric motor neuron (Fig. 4.3A) (Haddad and
Marder, 2021; 2018). We demonstrate that SNVI can perform multi-round inference and
obtains the posterior distribution with only 350,000 simulations – 25 times fewer than
previous methods!

We ran SNVI with a likelihood-estimator with the fKL divergence (SNVI+fKL), SIR,
and a binary calibration kernel. The calibration kernel is 1 for valid simulations and 0 for
simulations that produce NaN in at least 1 summary statistic (e.g. gaps between bursts
cannot be defined if there are no bursts). Because only 1% of the simulations from prior
samples are valid (Fig. 4.3F), we used 50,000 simulations in the first round and continued
for 30 rounds with 10,000 simulations each.

The posterior is complex and reveals strong correlations and nonlinear relationships
between parameters (Fig. 4.3B showing 4 out of 31 dimensions, full posterior in Ap-
pendix Fig. A.10). The conditional distributions p(θi,j |x,θ6=i,j) given a posterior sample
(Fig. 4.3C) are narrow, demonstrating that parameters have to be finely tuned to generate
the summary statistics of the experimentally measured activity.

We used posterior predictive checks to inspect the quality of the posterior. When simulating
data from the posterior mean and posterior mode (MAP), we find that both of them
match the statistics of the experimental activity (Fig. 4.3D). Similarly, samples from the
posterior distribution closely match statistics of the experimental activity (Fig. 4.3E). Out
of 10,000 posterior samples, 9366 (≈94%) generated activity with well-defined summary
statistics (compared to 1% of prior samples). For the samples which generate well-defined
summary statistics, the (z-scored) median distance between the observed data xo and
generated activity is smaller for posterior samples than for prior samples (Fig. 4.3F).
We emphasize that an application of SNLE with MCMC would be estimated to take
an additional 400 hours, due to 30 rounds of slow MCMC sampling (Fig. 4.3G) that
would be required– instead of 27 hours for SNVI. Likewise, when running SNPE-C on this
example, only 1 out of 2 million samples were within the prior bounds after the second
round, requiring computationally expensive rejection sampling (Greenberg et al., 2019;
Durkan et al., 2020a).

These results show that SNVI makes it possible to overcome the limitations of previous
methods and allows sequential neural simulation-based inference methods to effectively
and robustly scale to challenging inference problems of scientific interest. While it is
difficult to rigorously evaluate the accuracy of the obtained posterior distribution due to
a lack of ground truth, we observed that almost all posterior predictives have well-defined
summary statistics (94% vs 80% in Gonçalves et al. (2020)) and that the posterior
predictives closely match xo.

39





5. Discussion ∗

We introduced Sequential Neural Variational Inference (SNVI), an efficient, flexible, and
robust approach to perform Bayesian inference in models with an intractable likelihood.
We achieve this by combining likelihood-estimation (or likelihood-ratio estimation) with
variational inference, further improved by using SIR for refining posteriors. We demon-
strate that SNVI reduces the computational cost of inference while maintaining accuracy.
We applied our approach to a neuroscience model of the pyloric network with 31 param-
eters and showed that it is 25 times more efficient than previous methods. Our results
demonstrate that SNVI is a scalable and robust method for simulation-based inference,
opening up new possibilities for Bayesian inference in models with intractable likelihoods.

We selected three variational objectives for SNVI which induce mass-covering behavior and
are, therefore, well suited as a proposal for sampling from complex posterior distributions.
We empirically evaluated all of these methods in terms of runtime and accuracy on four
benchmark tasks. We found that, while their performance differed when using the raw
VI output, they all showed similar performance after an additional, computationally
cheap, sampling importance resampling (SIR) step. After the SIR step, all methods had
similar accuracy as MCMC, and all methods outperformed a mode-seeking variational
objective (reverse KL) which was used in a previously proposed method Wiqvist et al.
(2021). Our results suggest that mass-covering VI objectives (regardless of their exact
implementation) provide a means to perform fast and accurate inference in models with
intractable likelihood, without loss of accuracy compared to MCMC. We include technical
consideration on the choice of objective in Appendix Sec. A.2.

Furthermore, we present a way to calibrate likelihood-based methods towards appropriate
regions in data space. This method can be efficiently applied in the case of invalid data as
we demonstrate in Sec. 4.3. It was also applied to invalid data in SNPE by Lueckmann et al.
(2017); however, the benefit of other calibration kernels is less clear. Using likelihood-based
methods, we show that calibration requires a correction and derive the exact bias factor
(see Appendix Sec. A.4). We give a proof of concept that calibration with ABC kernels
can improve approximation quality in Appendix Fig. A.3. This can be attributed to a
more accurate likelihood estimate since the variational posterior is obtained equivalently.
Additionally, this correction factor has a close relationship to the likelihood implicitly used
in Approximate Bayesian Computation, as demonstrated in Appendix Sec. A.5. Hence we
can solely use the correction factor as a likelihood surrogate to obtain a simulation-efficient
ABC method (similar to Wilkinson (2014)). We let further exploration to future work.

∗Parts of this chapter are currently under review for publication and hence revised by Michael Deistler
and Jakob Macke (see https://openreview.net/forum?id=kZ0UYdhqkNY).

41

https://openreview.net/forum?id=kZ0UYdhqkNY
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A common approach in sequential methods is to use the current posterior estimate as the
proposal distribution for the next round, but more elaborate active-learning strategies for
choosing new simulations are possible (Papamakarios and Murray, 2016; Papamakarios
et al., 2019; Lueckmann et al., 2019a). SNVI can flexibly be combined with any active
learning scheme, and unlike neural likelihood(-ratio) methods, does not require expensive
MCMC sampling for updating posterior estimates. While this comes at the cost of having
to train two neural networks (a likelihood-model and a posterior-model), the cost of
training these neural networks is often negligible compared to the cost of simulations.
Another method that trains both a likelihood- and a posterior network is Posterior-
Aided Regularization (Kim et al., 2021), which regularizes the likelihood-estimate with a
simultaneously trained posterior-estimate. This improves the modelling of multimodal
posteriors, but the method still requires MCMC and thus scales poorly with the number
of samples and dimensions. Likelihood-free variational inference (Tran et al., 2017) avoids
learning a likelihood model by learning an implicit posterior distribution, but it requires
an adversarial training objective which can be difficult to optimize and requires extensive
hyperparameter tuning (Huszár, 2017).

Overall, SNVI combines the desirable properties of current methods: It can be combined
with any active learning scheme, it can flexibly combine information from multiple
datapoints, it returns a posterior distribution that can be sampled quickly, and it can
robustly deal with missing data. SNVI speeds up inference relative to MCMC-based
methods, sometimes by orders of magnitude, and can perform inference in large models
with many parameters. SNVI therefore has potential to provide a new ’go-to’ approach for
simulation-based inference, and to open up new application domains for simulation-based
Bayesian inference.
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A. Appendix

A.1. Overcoming vanishing gradients in the forward KL
estimator∗

We use an estimator of the forward Kullback-Leibler divergence (fKL) that is based on
self-normalized importance sampling. In this section, we demonstrate that this estimator
moves the variational distribution qφ(θ) towards the target density p(xo,θ) even if qφ(θ)
and p(xo,θ) differ strongly.

For this analysis, we consider a Gaussian toy example with prior p(θ) = N (θ; 0, 4),
likelihood p(x|θ) = N (x;θ, 1), and observation xo = 1. The posterior distribution can
be computed in closed-form as p(θ|xo) = N (θ; 4/5, 4/5). We aim to learn the posterior
distribution using variational inference with the variational family qµ(θ) = N (µ, 4/5)
(note that µ is the only parameter). The best approximation within this family is µ∗ = 4/5.

We use this toy example to compare the gradient and the signal-to-noise ratio (SNR)
of the self-normalized fKL estimator to the fKL estimator introduced by Wan et al.
(2020). Fig. A.1A (left) shows the gradient of the loss for different values of µ. When
µ ≈ µ∗ = 4/5, the fKL (gray) without self-normalization closely matches the true gradient
(red). However, as µ is further from µ∗, the fKL first points in the wrong direction and
then vanishes, which prevents learning. The self-normalized fKL (blue, orange, green)
closely matches the gradient around µ ≈ µ∗ = 4/5 and does not vanish for µ that are far
from µ∗. The gradient is stronger if more samples N are used to approximate the fKL.
Similarly, the SNR(∇φL(φ)) = |E[∇φL(φ)]/

√
Var(∇φL(φ))| does not vanish for µ that

are far from µ∗ for the self-normalized fKL.

To understand this behavior of the self-normalized fKL, we computed an approximation
to the gradient ∇µLfKL(µ) in this toy example. The fKL loss is given as:

∇µLfKL(µ) = −Eθ∼qφ

[
w(θ)∑N
i=1w(θ)

∇µ log qµ(θ)

]
≈ −

N∑
i=1

w(θi)∑N
i=1w(θi)

∇µ log qµ(θi)

with weights w(θi) = p(xo,θ)
qφ(θ) . In the case where qφ(θ) differs strongly from p(xo,θ), the

weights are often degenerate, i.e. the strongest weight is much larger than all others. In

∗Parts of this section are currently under review for publication and hence revised by Michael Deistler
and Jakob Macke (see https://openreview.net/forum?id=kZ0UYdhqkNY).
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BA

Figure A.1.: A Left: Gradient estimation on the Gaussian example. For values of µ around
µ∗ = 4/5, all estimators provide good gradients. As µ is farther from µ∗, the
forward variational bound (fVB) (grey) vanishes, whereas the self-normalized
fVB approaches a constant. Right: SNR for the fVB and the self-normalized
fVB. B Theoretical and empirical densities pR(r) for µ = 6 and µ = 12.

the worst case, w̃(θi) = w(θi)∑N
i=1 w(θi)

= 1 for some i and the gradient estimator reduces to

∇µLfKL(µ) = −∇µ log qµ(arg max
θ1,...,θN

w(θ)) = −∇µ log qµ(r)

The gradient of µ is thus determined by r = arg maxθ1,...,θN w(θ), which itself can be
considered a draw from a random variable R. We will now derive the probability density
pR(r) of R.

If µ > µ∗, then w(θ) is monotonically decreasing in θ because w(θ) ∝ N (θ;µ∗,4/5)
N (θ;µ,4/5) ∝

exp(5/4 ·θ(µ∗−µ)). The cumulative distribution function FR(R ≤ r) can then be written
as

FR(R ≤ r) = P (arg max
θ1,...,θn

w(θ) ≤ r) = P (min(θ1, . . . ,θn) ≤ r)

= 1− P (min(θ1, . . . ,θn) > r) = 1−
N∏
i=1

P (θi > r)

= 1− (1− Fqφ(r))N

Thus, R has the density pR(r) = d
drF (R ≤ r) = N(1−Fqφ(r))N−1qµ(r). The derivation is

analogous for the case µ < µ∗. Because ∇µLfKL(µ) = ∇µ log qµ(r) for r ∼ pR, this allows
us to compute the distribution of the gradient of µ (under the assumption that weights
are degenerate).

We empirically validate this result on the Gaussian toy example. Fig. A.1B (left) shows the
true posterior distribution (black), the variational density qµ(θ) for µ = 6 and µ = 10 and
the corresponding pR(r) for N = 1000. The theoretically computed density pR(r) (dashed
lines) matches the empirically observed distribution of arg maxθi=1...N w(θi). For almost
every value of r ∼ pR(r), the gradient ∇µ log qµ(r) is negative, thus driving ∇µLfKL(µ)
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A B

Figure A.2.: A SIR improvements on two moons example. We plot the joint density
as learned by the likelihood-model p(xo,θ) = `ψ(xo|θ)p(θ) against the
variational posterior qφ (blue, obtained with the fKL), as well as the SIR-
corrected density with K = 2 (orange) and K = 32 (green). Despite using
an expressive normalizing flow as qφ, SIR improves the accuracy. B shows
the same but on a mode collapsed variational posterior obtained using the
rKL. SIR can only slightly improve it.

into the correct direction. For larger N , the distribution pR(r) shifts towards the true
posterior distribution and thus also the gradient signal increases.

Notably, for µ that are even further from µ∗, ∇µ log qµ(r) remains relatively constant
(Fig. A.1B, right). This explains why the gradient ∇µLfKL(µ) becomes constant in
Fig. A.1A (left).

A.2. Choice of divergence†

In Fig. 4.2, we demonstrated that all mass-covering objectives perform similarly in
terms of accuracy and runtime on the problems we considered. We here give technical
recommendations for choosing a variational objective:

(i) Closed-form posterior: The variational posterior provides a closed-form approxima-
tion to the posterior, but this is no longer the case when SIR is used. While, in
our results, all three approaches performed similarly with SIR, they can differ in
their performance without it, and the forward KL and the α-divergence provided

†Parts of this section are currently under review for publication and hence revised by Michael Deistler
and Jakob Macke (see https://openreview.net/forum?id=kZ0UYdhqkNY).
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better approximations than the IW-ELBO. Thus, if one seeks a posterior density
that can be evaluated in closed-form, our results suggest using the forward KL or
the α-divergence.

(ii) Dimensionality of the parameter space: We use an autoregressive normalizing flow
as a variational family. These flows are very expressive, yet the computation time
of their forward or backward pass scale with the dimensionality of θ (Papamakarios
et al., 2017; Kingma et al., 2016; Durkan et al., 2019a). The IW-ELBO and the
α-divergences only require forward passes, whereas the forward KL requires forward
and backward passes, thus making the forward KL expensive for high-dimensional
parameter spaces. The STL estimator used in the IW-ELBO and the α-divergences
also require forward and backward passes. We found that the STL estimator improves
the performance of the IW-ELBO only weakly (Fig. A.6). Thus, in cases where
computational cost is critical, our results suggest that using the IW-ELBO without
the STL can give high accuracy at a low computational cost. Another way to
reduce computational cost is to use alternative architectures for the normalizing
flow, e.g. coupling layers (Durkan et al., 2019a; Papamakarios et al., 2021).

(iii) Trading-off the mass-covering property with computational cost : For α-divergences,
one can trade-off the extent to which the divergence is mass-covering by choosing
the value of α (low α is more mass-covering). As shown in Fig. A.6, high values of
α benefit less from using the STL estimator. Thus, in cases where mass-covering
behavior of the algorithm is less crucial, the STL estimator can be waived, leading
to lower computational cost because the normalizing flow requires only forward
passes (see point (ii)).

A.3. Improvement through SIR‡

We use SIR to refine samples obtained from the variational posterior. Consistent with
Agrawal et al. (2020), we found that using SIR always helps to improve the approximation
quality even using complex variational families such as normalizing flows (compare dotted
and solid lines in Fig. 4.2).

SIR particularly improves the posterior estimate when the proposal (i.e. the variational
posterior) is overdispersed. This provides an explanation for why SIR is particularly
useful for the mass-covering divergences used in SNVI, and less so for mode-covering
divergences (as used in SNPLA). We show this in Fig. A.2 on Two moons. Using SIR,
the slightly overdispersed variational approximation obtained through the fKL estimator
can be strongly refined. Yet on variational approximations with e.g. collapsed mode, SIR
leads only to slight improvements.

‡Parts of this section are currently under review for publication and hence revised by Michael Deistler
and Jakob Macke (see https://openreview.net/forum?id=kZ0UYdhqkNY).
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Algorithm 4: SNVI with calibration
1 Inputs: prior p(θ), observation xo, divergence D, simulations per round N , number

of rounds R, selection strategy S and calibration kernel K.
2 Outputs: Approximate likelihood `ψ , variational posterior qφ and calibration

network cζ .
3 Initialize: Proposal p̃(θ) = p(θ), simulation dataset X = {}, calibration dataset
C = {}

4 for r ∈ [1, ..., R] do
5 for i ∈ [1, ..., N ] do
6 θi = S(p̃, `φ, p) ; // sample θi ∼ p̃(θ)
7 simulate xi ∼ p(x|θi) ; // run the simulator on θi
8 add (θi,K(xi,xo)) to C
9 if K(x,xo) > 0 then

10 add (θi,xi) to X
11 end
12 end
13 (re-)train `ψ; ψ∗ = arg minψ − 1

N

∑
(xi,θi)∈X K(xi,xo) log `ψ(xi|θi) ; // or

SNRE
14 (re-)train cζ ; ζ∗ = arg minζ

1
N

∑
(θi,K(xi,xo))

L(cζ(θi),K(xi,xo)) ; // MSE or
cross-entropy for binary calibration kernel

15 (re-)train qφ; φ∗ = arg minφD(qφ(θ)||p(θ|xo)) with

p(θ|xo) ∝ p(xo|θ)p(θ) ≈ `ψ∗(xo|θ)cζ∗(θ)p(θ)

16 p̃(θ) = qφ(θ)

17 end

A.4. Proofs for calibration kernel§

Many simulators can produce unreasonable or undefined values (Lueckmann et al., 2017).
To be able to use SNVI in these cases, we developed a loss-reweighing strategy with
calibration kernels. Theorem A.1 and Lemma A.3 are relevant to SNLVI, Theorem A.2
and Lemma A.4 are relevant to SNRVI, and Lemma A.5 is relevant to both methods.

Theorem A.1 and Theorem A.2 provide a means to use a calibration kernel in the training
of the likelihood(-ratio)-model such that one can still recover the posterior density. In
SNVI, we sample from the (unnormalized) potential function with variational inference.
However, one can also use Theorem A.1 and Theorem A.2 in combination with SNLE
and SNRE and draw samples from the potential function with MCMC.

Both SNLVI and SNRVI with calibration kernels rely on the estimation of Ex∼p(x|θ)[K(x,xo)].

§Parts of this section are currently under review for publication and hence revised by Michael Deistler
and Jakob Macke (see https://openreview.net/forum?id=kZ0UYdhqkNY).
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We estimate this term with a feed-forward regression neural network cζ(θ) (see Lemma
A.5). The network is trained on pairs (θ,K(x,xo)), where θ and x are the same pairs as
used for training the likelihood(-ratio)-model. For general calibration kernels K(x,xo),
we use a mean-squared error loss, whereas in the case of invalid data, we parameterize
cζ(θ) as a logistic regression network and train it with a cross-entropy loss (since the
calibration kernel K(x,xo) is a binary function: 0 for invalid data, 1 for valid data).

In the case of excluding invalid data from the dataset, K(x,xo) is a binary function that
is 1 for valid data and 0 for invalid data. In practice, we remove the simulations for which
K(x,xo) = 0 from the dataset that is used to train the likelihood(-ratio)-model (since
they do not contribute to the loss) and train `ψ(x|θ) only on the valid simulations.

Theorem A.1. Let K : X × X → R+ be a kernel. Let `ψ∗(x|θ) be the minimizer of the
objective

L = Eθ,x∼p̃(θ,x)[K(x,xo) log(`ψ(x|θ))]

and let cζ∗(θ) be the minimizer of

L = Eθ,x∼p̃(θ,x)[(cζ(θ)−K(x,xo))
2]

Then the potential function

P(θ) = `ψ∗(xo|θ)p(θ)cζ∗(θ)

is proportional to the posterior density p(θ|xo).

Proof. Using Lemma A.3 and Lemma A.4, we get

P(θ) = `ψ∗(xo|θ)p(θ)cζ∗(θ)

=
K(x,xo)p(xo|θ)

Ex∼p(x|θ)[K(x,xo)]
p(θ)Ex∼p(x|θ)[K(x,xo)]

= K(x,xo)p(xo|θ)p(θ)

∝ p(θ|xo)

Theorem A.2. Let K : X × X → R+ be a kernel. Let `ψ∗(x,θ) be the minimizer of the
objective

L = Eθ,x∼p̃(θ,x) [K(x,xo) log(`ψ∗(x,θ))] + Eθ,x∼p(θ)p(x) [K(x,xo) log(1− `ψ∗(x,θ))]

and let cζ∗(θ) be the minimizer of

L = Eθ,x∼p̃(θ,x)[(cζ(θ)−K(x,xo))
2]

Then the potential function

P(θ) = `ψ∗(xo,θ)p(θ)cζ∗(θ)

is proportional to the posterior density p(θ|xo).
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Proof. Using Lemma A.4 and Lemma A.5, we get

P(θ) = `ψ∗(xo,θ)p(θ)cζ∗(θ)

=
Ex∼p(x)[K(x,xo)]

Ex∼p(x|θ)[K(x,xo)]

p(xo|θ)

p(xo)
p(θ)Ex∼p(x|θ)[K(x,xo)]

= Ex∼p(x)[K(x,xo)]
p(xo|θ)

p(xo)
p(θ)

∝ p(θ|xo)

Lemma A.3. Let K : X × X → R+ be an arbitrary kernel. Then, the objective

L = Eθ,x∼p̃(θ,x)[K(x,xo) log(`ψ(x|θ))]

is minimized if and only if `ψ(x|θ) = 1
Z(θ)K(x,xo)p(x|θ) for all θ ∈ support(p̃(θ)), with

normalizing constant Z(θ) =
∫
K(x,xo)p(x|θ)dx = Ex∼p(x|θ)[K(x,xo)].

Proof.

L = Eθ,x∼p̃(θ,x)[K(x,xo) log(`ψ(x|θ))]

=

∫∫
K(x,xo)p̃(θ,x) log(`ψ(x|θ))dxdθ

=

∫∫
K(x,xo)p̃(θ)p(x|θ) log(`ψ(x|θ))dxdθ

=

∫
p̃(θ)

∫
K(x,xo)p(x|θ) log(`ψ(x|θ))dxdθ

Since
∫
K(x,xo)p(x|θ) log(`ψ(x|θ))dx ∝ DKL

(
1

Z(θ)K(x,xo)p(x|θ), `ψ(x|θ)
)
, this term

is minimized if and only if `ψ(x|θ) = 1
Z(θ)K(x,xo)p(x|θ) for all θ ∈ support(p̃(θ)) with

Z(θ) =
∫
K(x,xo)p(x|θ)dx = Ex∼p(x|θ)[K(x,xo)].

Lemma A.4. Let K : X × X → R+ be an arbitrary kernel. Then, the objective

L = Eθ,x∼p̃(θ,x) [K(x,xo) log(`ψ∗(x,θ))] + Eθ,x∼p̃(θ)p(x) [K(x,xo) log(1− `ψ∗(x,θ))]

is minimized if and only if `ψ(x,θ) =
Ex∼p(x)[K(x,xo)]

Ex∼p(x|θ)[K(x,xo)]
p(x|θ)
p(x) for all θ ∈ support(p̃(θ)).
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Proof. We begin by rearranging the expectations:

L = Eθ,x∼p̃(θ,x) [K(x,xo) log(`ψ∗(x,θ))] + Eθ,x∼p̃(θ)p̃(x) [K(x,xo) log(1− `ψ∗(x,θ))]

=

∫∫
p̃(θ,x)K(x,xo) log(`ψ∗(x,θ))dθdx+∫∫

p̃(θ)p̃(x)K(x,xo) log(1− `ψ∗(x,θ))dθdx

=

∫∫
p̃(θ,x)K(x,xo)∫∫
p̃(θ,x)K(x,xo)dθdx

log(`ψ∗(x,θ))dθdx+∫∫
p̃(θ)p̃(x)K(x,xo)∫∫
p̃(θ)p̃(x)K(x,xo)dθdx

log(1− `ψ∗(x,θ))dθdx

= Eθ,x∼πjoint(θ,x) [log(`ψ∗(x,θ))] + Eθ,x∼πmarginal(θ,x) [log(1− `ψ∗(x,θ))]

where we introduced

πjoint(θ,x) =
p̃(θ,x)K(x,xo)∫∫
p̃(θ,x)K(x,xo)dθdx

πmarginal(θ,x) =
p̃(θ)p̃(x)K(x,xo)∫∫
p̃(θ)p̃(x)K(x,xo)

Since binary classification recovers density ratios (Cranmer et al., 2015; Mohamed and
Lakshminarayanan, 2016; Gutmann et al., 2018), we get

`ψ∗(x,θ) =
πjoint(θ,x)

πmarginal(θ,x)

=

1∫∫
p̃(θ,x)K(x,xo)dθdx

p̃(θ,x)K(x,xo)

1∫∫
p̃(θ)p(x)K(x,xo)dθdx

p̃(θ)p̃(x)K(x,xo)

=

∫∫
p̃(θ)p̃(x)K(x,xo)dθdx∫∫
p̃(θ)p(x|θ)K(x,xo)dθdx

p(x|θ)

p̃(x)

=

∫
p̃(x)K(x,xo)

∫
p̃(θ)dθdx∫

p(x|θ)K(x,xo)
∫
p̃(θ)dθdx

p(x|θ)

p̃(x)

=
Ex∼p̃(x)[K(x,xo)]

Ex∼p(x|θ)[K(x,xo)]

p(x|θ)

p̃(x)

Lemma A.5. The objective

L = Eθ,x∼p̃(θ,x)[(cζ(θ)−K(x,xo))
2]

is minimized if and only if cζ(θ) = Ex∼p(x|θ)[K(x,xo))] for all θ ∈ support(p̃(θ)).
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Proof.

L = Eθ,x∼p̃(θ,x)[(cζ(θ)−K(x,xo))
2]

=

∫∫
p̃(θ,x)(cζ(θ)−K(x,xo))

2dxdθ

=

∫
p̃(θ)

∫
p(x|θ)(cζ(θ)−K(x,xo))

2dxdθ

=

∫
p̃(θ)Ex∼p(x|θ)[(cζ(θ)−K(x,xo))

2]dθ

which is minimized if and only if cζ(θ) = Ex∼p(x|θ)[K(x,xo))]) for all θ ∈ support(p̃(θ)).

A.5. Comparison to regression adjustment and ABC

Regression adjustment is typically performed after approximate Bayesian computation
(ABC), to correct the bias induced by using non-zero tolerance ε. We will show that SNVI
with calibration kernel K(x,xo) = kε(x− xo) is less related to regression adjustment but
can be related to ABC.

Assume we run rejection ABC with kernel kε, then as introduced in Subsec. 2.2.1 the
obtained samples are from the approximate ABC posterior

pABCε (θ|xo) ∝ Ex∼p(x|θ)[kε(x− xo)]p(θ)

which implicitly use an approximate likelihood estimate pABCε (x|θ) = Ex∼p(xo|θ)[kε(x−
xo)].

The goal of regression adjustment is to transform each sample θi ∼ pABCε (θ|xo) to an
‘adjusted’ sample θ′i ∼ p(θ|xo). Be u independent noise, the first step is to learn a
stochastic map θ = fφ(u,x) from x to θ on all (θ,x) pairs for which x got accepted by
the ABC criterion i.e. with probability proportional to kε(x− xo).The second step is to
adjust θi by solving θi = fφ∗(ui,xi) for ui i.e. ui = f−1

φ∗ (θi,xi). If this is feasible, then we
can generate adjusted samples from the exact posterior θ′i = fφ∗(ui,xo) if fφ∗ does capture
the exact stochastic mapping from x to θ. However, for efficient invertibility we typically
have to restrict the functional form of fφ and thus this will only hold approximately.
Typical choice of fφ are linear functions (Beaumont et al., 2002b) or non-linear affine
transformations (Blum and François, 2010). Papamakarios (2019) pointed out that any
form of SNPE is naturally related to regression adjustment as we directly model the
relationship from x to θ . The effect is particularly evident if we use a normalizing
flow as a conditional density estimator in SNPE. Then we explicitly learn an invertible
transformation of noise which thus can be used for regression adjustment.

In contrast in SNVI we learn an stochastic map from θ to x and thus cannot use it to
adjust approximate posterior samples. Yet there is an interesting relation to the implicit

59



Appendix A. Appendix

103 104 105

Simulations

0.5

0.6

0.7

0.8

0.9

1.0

C
2
S
T

SNLVI+fKL

ABC calibration = 0.1

103 104 105

Simulations

0.5

0.6

0.7

0.8

0.9

1.0

C
2
S
T

SNLVI+fKL

ABC calibration = 0.5

103 104 105

Simulations

0.5

0.6

0.7

0.8

0.9

1.0

C
2
S
T

SNLVI+fKL

No calibration

103 104 105

Simulations

0.5

0.6

0.7

0.8

0.9

1.0

C
2
S
T

SNLVI+fKL

ABC calibration = 1

Figure A.3.: SNLVI results obtained on Two moons using the fKL estimator and an ABC
calibration kernel kε = 1(||x− xo||2 ≤ ε).

likelihood assumed by any ABC algorithm. Recall that the calibration correction network
estimates cζ∗(θ) = Ex∼p(x|θ)[kε(x− xo)] and thus

pABCε (θ|xo) ∝ Ex∼p(x|θ)[kε(x− xo)]p(θ) = cζ∗(θ)p(θ)

The calibrated likelihood model `ψ(x|θ) learns `ψ∗(x|θ) ∝ kε(xo−x)p(x|θ). Thus instead
of adjusting samples, we can adjust the ABC posterior pABCε (θ|xo) towards the true
posterior by multiplying `ψ∗(xo|θ) as shown in Theorem A.1.

This relates our approach to Wilkinson (2014) method to accelerate ABC using a Gaussian
process. He proposes to learn the ABC likelihood using a Gaussian process. This can
be beneficial as one additionally obtain an uncertainty estimate. We choose a different
model e.g. we estimate the exact same quantity using a neural network cζ∗ . Similar to
sequential neural methods this estimate can be used to rule out proportions of the input
space which are unlikely to produce the observation (yet Wilkinson (2014) approach
does not use posterior estimates to do this). We can then use MCMC to sample from
the ABC-posterior distribution and thus can interpret Wilkinson (2014) approach as
ABC equivalent to SNLE (Papamakarios et al., 2019). The corresponding SNVI version
would instead obtain samples using variational inference. Whereas this approach can be
significantly more efficient than naive ABC approaches, it does not correct for non-zero
tolerance level ε within the ABC kernel kε.

Thus there is a dual interpretation for calibration adjustment using ABC kernels. We can
either interpret cζ∗ as correction factor for `ψ∗ or `ψ∗ as correction factor for cζ∗ . Thereby
ε mediates which parts of the likelihood are learned by `ψ and which parts are learned
by cζ . As ε → 0, clearly cζ∗(θ) → p(xo|θ) and `ψ∗(x|θ) → δ(xo − x) i.e. `ψ becomes
increasingly irrelevant. Respectively as ε→∞, clearly cζ∗(θ)→ K (where K is constant
i.e. if kε is an indicator then K = 1) and `ψ(x|θ)→ p(x|θ).

In Fig. A.3 we show results obtained for a classical ABC calibration kernel. It did improve
performance in some cases, but not in all. Additionally, we obtain quite different results
for different choices of ε. In fact, it may be better to adaptively choose ε and gradually
decrease it. Within the above experiments, almost all samples are ‘accepted’ after the
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first round. Further in such a scenario, we may also drop `ψ completely and instead infer
the ABC-posterior. This may be beneficial in high dimension, as the architecture of cζ is
unrestricted. Further investigation is left to future research.

A.6. SNPLA∗

In Fig. 4.1 and Fig. 4.2, we compared SNVI to SNPLA (Wiqvist et al., 2021). To ensure
comparability between SNPLA and SNVI, we implemented SNPLA ourselves and used
the same likelihood- and posterior-model for both methods. The main difference between
our implementation and the original implementation of SNPLA are:

1. We do not use the proposal p̂r(θ) = αp(θ) + (1− α)qφ(θ) for α ∈ [0, 1], instead we
use α = 0, i.e. we use the current posterior estimate as proposal.

2. Secondly, we use a Rational Linear Spline Flow (RSF) based on pyro (Bingham
et al., 2019), whereas Wiqvist et al. (2021) uses a Masked Autoregressive Flow
based on nflows (Durkan et al., 2019b).

Fig. A.4 compares the performance of our SNPLA implementation to the original im-
plementation. Our implementation performs slightly better, likely due to the use of
more expressive normalizing flows. We used our implementation for all experiments and
nonetheless refer to the method with the name ‘SNPLA’.

Figure A.4.: Comparison between SNPLA implementation of (Wiqvist et al., 2021) and
SNVI with rKL.

A.7. Experiments: Benchmark*

All tasks were taken from an sbi benchmark (Lueckmann et al., 2021). For a description
of the simulators, summary statistics, and prior distributions, we refer the reader to that
paper.

∗Parts of this section are currently under review for publication and hence revised by Michael Deistler
and Jakob Macke (see https://openreview.net/forum?id=kZ0UYdhqkNY).
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Appendix A. Appendix

We use the SNLE and SNRE as implemented in the sbi package (Tejero-Cantero et al.,
2020). In all experiments, we learn the likelihood with a Masked Autoregressive Flow
(MAF) with five autoregressive layers each with two hidden layers and 50 hidden units
(Tejero-Cantero et al., 2020; Durkan et al., 2019b). For SNRE we use a two block residual
network with 50 hidden units. Just as in Lueckmann et al. (2021), we implement SNRE
with the loss described in Durkan et al. (2020a).
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Figure A.5.: C2ST benchmark results for SNVI with ratio estimation (SNRVI) for four
models, Bernoulli GLM (A), Lotka volterra (B), Two moons (C) and SLCP
(D). Each point represents the average metric value for ten different obser-
vations, as well as the confidence intervals. Bars on the right indicate the
average runtime. Two reference methods: SNRE with MCMC sampling and
the rKL, as well as three variants of SNVI, with forward KL (SNVI+fKL),
importance-weighted ELBO (SNVI+IW) and α-divergence (SNVI+α). Dot-
ted lines: performance when not using SIR.

The implementation of the posterior normalizing flows is based on pyro (Bingham et al.,
2019), as pyro caches intermediate values during sampling and thus allow cheap density
evaluation on obtained samples. We use MAFs for higher dimensional problems and
Rational Linear Spline Flows (RSF) for low dimensional but complex problems (SLCP,
Two moons). We always use a standard Gaussian base distribution and five autoregressive
layers with a hidden size depending on input dimension ([dim · 10, dim · 10] for spline
autoregressive nets and [dim · 5 + 5] for affine autoregressive nets, each with ReLU
activations). As the posterior support must match that of the prior, we add a bijective
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mapping that maps the support to that of the prior. This allows training the normalizing
flows directly on the constrained domain.

We used a total sampling budget of N = 256 for any VI loss. To estimate the IW-ELBO
we use N = 32 to estimate L(K=8)

IW (φ) (Rainforth et al., 2018). Additionally, we use the
STL estimator (Roeder et al., 2017). An alternative would be the doubly reparameterized
gradient estimator, which is unbiased. We choose the STL estimator as it admits larger
SNRs at the cost of introducing some bias (Tucker et al., 2018). Because for α → 0

we have that Lα → L(K=1)
IW we use this estimator also to estimate Lα=0.1(φ). While the

estimator can also be used for the ELBO, it requires additional computational cost i.e. we
additionally need to calculate the inverse transformation, which is costly for autoregressive
flows. Note that the fKL estimator also requires the inverse transform, thus we recommend
using a normalizing flow with fast forward and inverse passes in problems with many
parameters, e.g. normalizing flows based on coupling layers (Dinh et al., 2017; Durkan
et al., 2019a).

We trained for 10 rounds of simulations. In each round, we initialize the likelihood- and
the posterior-model as their respective last estimates from the previous round. We train
the posterior model for each round for at least 100 iterations and at most 1000 iterations.
We evaluate convergence by tracking the decrease within the loss. For this automated
benchmark, the convergence criteria are chosen conservative to avoid early stopping. More
elaborate convergence criteria may improve runtime.

As metrics, we used classifier 2-sample tests (C2ST). C2ST trains a classifier to distinguish
posterior samples produced by a specific method to ground truth posterior samples. Thus,
a value of 0.5 means that the distributions are identical, whereas higher values indicate a
mismatch between the distributions. As in Lueckmann et al. (2021), we computed the
C2ST using 10,000 samples. Each figure shows the average metric value over 10 different
observations, as well as the corresponding 95% confidence interval.

Fig. A.6 shows results for further variational objectives on the two moons (top) and on
the SLCP task (bottom). The self-normalization used for the fKL estimator improves the
approximation quality (A.6, left, dark vs light purple). For the IW-ELBO (middle) as well
as for the α-divergences (right), the STL estimator improves performance (Rainforth et al.,
2018). The gains from the STL are stronger for α-divergences than for the IW-ELBO
(especially when using SIR). The STL particularly improves the estimate for low values of
alpha (which are more support-covering). This is because they are also tighter evidence
lower bounds.

63



Appendix A. Appendix

103 104 105

Simulations

0.5

0.6

0.7

0.8

0.9

1.0

C
2
S
T

SNLVI+fKL

103 104 105

Simulations
103 104 105

Simulations

SNLVI+

Two moons

103 104 105

Simulations

0.5

0.6

0.7

0.8

0.9

1.0

C
2
S
T

q

q + SIR
fKL

fKL (fVB)
IW

IW (STL)
( = 0.1)
( = 0.1,STL)

( = 0.5)
( = 0.5, STL)

103 104 105

Simulations
103 104 105

Simulations

SLCP

SNLVI+fKL SNLVI+IW

SNLVI+IW

SNLVI+

Figure A.6.: Evaluation of further variational objectives for the two moons (top) and the
SLCP (bottom) task. Left: Variations of the forward-KL (with and without
self-normalized weights). Middle: Variations of the importance-weighted
objective (with and without STL). Right: Variations of the α-divergence
(with and without STL as well as for different values of α.

64



A.7. Experiments: Benchmark

Lotka volterra (SNLE) Lotka volterra (SNPLA) Lotka volterra (SNVI+fKL)

Bernoulli GLM (SNLE) Bernoulli GLM (SNPLA) Bernoulli GLM (SNVI+fKL)

Figure A.7.: Samples from the posterior distributions for SNLE with MCMC, SNVI +
fKL, SNVI + rKL. First row: results for SLCP. Second row: Lotka-Volterra.
Third row: Bernoulli GLM.
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A.8. Experiments: Alternative variational family

We investigated several variational objectives for SNVI. Yet, another major factor that
can strongly affect the accuracy in VI is the variational family. We mainly focus on
normalizing flows because of their flexibility to approximate most distributions very
well. Another similarly flexible family are mixture distributions with parameters Φ =
{π1, . . . , πK , φ1, . . . , φK} given by

qΦ(θ) =
K∑
k=1

πkqφk(θ)

with
∑K

k=1 πk = 1. Choosing qφk(θ) = N (θ;µk,ΣK) leads to a Gaussian mixture (MoG),
which is a universal density approximator given enough components (Nguyen, 2017). In
general qφk can be an arbitrary distribution. We also consider a mixture of normalizing
flows (MoF), which can be highly expressive even with a few components (Pires and
Figueiredo, 2020).

Problematically this family is less suitable for BBVI as e.g. the reparameterization trick
cannot be applied directly. Alternatives as the ‘score function’ (also called REINFORCE)
gradient estimate typically have larger variance (Mohamed et al., 2020; Morningstar et al.,
2021), hence we consider two approaches for reparameterization.

Gradient estimate for reparameterizable components For BBVI we often need an
estimate for ∇ΦEθ∼qΦ [f(θ)] e.g. if we minimize the KL divergence we have f(θ) =
log(p(xo,θ)/ log qΦ(θ)). Mixture distributions possess the property that any expectation
can be written as follows:

Eθ∼qΦ [f(θ)] =

∫
f(θ)

K∑
k=1

πkqφk(θ)dθ =

K∑
k=1

πkEθ∼qφk [f(θ)]

If the components qφk are reparameterizable i.e. θ ∼ qφk ⇐⇒ θ = Tφk(θ0) with θ0 ∼
qk(θ0), then we can estimate the gradient of the full expectation, by using reparameterized
samples from each of it’s components i.e

∇ΦEθ∼qΦ [f(θ)] = ∇Φ

K∑
k=1

πkEθ0∼qk [f(Tφk(θ0))]

Morningstar et al. (2021) demonstrated that this approach can perform better than a
‘score function’ estimator. They further investigated the importance weighted ELBO,
which showed a mass-covering property similar to our results using normalizing flows.
Yet this approach scales badly with the number of mixture components. If we estimate
any expectation with N samples we require N ·K samples in total. Hence this approach
is inefficient for mixture distributions with many components. Problematically if we for
example use MoGs we require many components to be expressive.
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Implicit reparamerization Direct parameterization is difficult for the whole mixture
distribution since finding a suitable transformation is difficult. It is typically easier to
find a standardizing function θ0 = Sφ(θ) that when applied remove the dependence on
φ such that θ0 ∼ q(θ0). We can apply reparameterization if the inverse Tφ = S−1

φ is
tractable. A standardizing function exists for a wide variety of continuous distributions
i.e. the CDF of a univariate distribution maps samples from it to samples from a uniform
distribution over [0, 1]. Whereas the CDF is often available in closed-form, inversion is
often complicated or expensive.

Figurnov et al. (2018) proposed an alternative way to compute the reparameterization
gradient which avoids inversion of Sφ. Be θ = S−1

φ (θ0), then the reparameterization
gradient is given by

∇φEθ∼qφ [f(θ)] = Eθ0∼q0 [∇θf(θ)∇φθ] with ∇φθ = ∇φS−1
φ (θ0)

The key trick to avoid the inversion in ∇φθ is to instead apply the total gradient to the
equality Sφ(θ) = θ0. We obtain

∇θSφ(θ)∇φθ +∇φSφ(θ) = 0 ⇐⇒ ∇φθ = −(∇θSφ(θ))−1∇φSφ(θ).

This implicit reparameterization only requires differentiating Sφ, hence can be computed
analytically or using automatic differentiation. However it requires solving a linear system
of d equations were d is the dimension of θ.

Figurnov et al. (2018) also proposed a universal standardizing function for the multivariate
case using conditional CDFs:

Sφ(θ) = (Fφ(θ1), Fφ(θ2|θ1), . . . , Fφ(θd|θ1, . . . , θd−1)) = θ0 ∼ Unif(θ0; 0, 1).

For mixture distributions the conditional CDFs can be obtained by

FΦ(θd|θ1, . . . θd−1) =

K∑
k=1

π̃kFφk(θd|θ1, . . . , θd−1) with π̃k =
πkqφk(θ1, . . . , θd)∑K

j=1 πjqφj (θ1, . . . , θd−1)

making implicit reparameterization tractable for mixture models if the conditional CDFs
and marginal densities for each component are tractable (Figurnov et al., 2018). If we
assume the components factorize than this simplifies. Graves (2016) already derived
gradients for Gaussian mixtures with diagonal covariance.

We show that Sφ can be efficiently computed if the component’s of the mixture are
defined through an invertible autoregressive transform of a simple factorized base density
with tractable CDF. Examples contain all autoregressive normalizing flows without
permutations (Papamakarios et al., 2017; Durkan et al., 2019a), but also the Gaussian
distribution as θ ∼ N (θ;µ,Σ) ⇐⇒ θ = Lθ0 + µ with θ0 ∼ N (θ0; 0, I) and L a lower
triangular (thus ‘autoregressive’) matrix with LTL = Σ which exists as Σ is positive
definite.

67



Appendix A. Appendix

For simplicity lets just consider a single component, thus we will drop the index k. Be
θ0 ∼ π(θ0) =

∏d
j=1 π(θ0

j ) the base density. In this model a variable θj is obtained through
an invertible transformation θj = Tφj (θ

0
j ) and φj = f(θ1:j−1).

This property ensures that we can easily obtain the conditional CDFs by inversion. We
have that for some c the conditonal CDF is given by

Fj(c|θ1:j−1) = P (θj ≤ c|θ1:j−1) = P (θ0
j ≤ T−1

φj
(c)|θ1:j−1) = F 0

j (T−1
φj

(c))

where F 0
j is the marginal CDF of the base distribution’s marginal π(θ0

j ) which we assumed
to be tractable. As the base distribution factorized we also can drop the conditioning
on θ1:j−1. Consequently we can compute the vector of all conditional CDFs by simply
inverting the full autoregressive transform to obtain θ0, then compute all marginal CDFs
of the base density.

We also require all marginal distributions q(θ1:j) to compute Sφ. By basic rules of probabil-

ity we can compute them using all conditionals q(θ1:j) =
∏j
i=1 q(θi|θ1:i−1). Be J−1 =

∂T−1
φ

∂θ
the Jacobian matrix. Then J−1 is lower triangular as the transform is autoregressive and
the absolute determinant is given by | det J |−1 =

∏d
i=1 |J

−1
ii | (Papamakarios et al., 2017;

Papamakarios, 2019). By the change of variable theorem we can hence write

q(θ) = π(T−1
φ (θ))|det J |−1 =

d∏
i=1

π(θ0
i )|J−1

ii | =
d∏
i=1

q(θi|θ1:i−1).

Thus we can compute the vector of all conditional distributions by the elementwise
product of π(θ0) and the diagonal elements of J−1. Each joint distributions q(θ1, . . . , θj)
can thus be expressed as a cumulative product of this vector up to variable θj .

rKL(MoF) rKL (impl., MoG) rKL (impl., MoF) fKL (MoF) fKL (MoG)

Figure A.8.: Two moons posterior distribution using mixture variational families.

Experiments: On multimodal targets, variational objectives different from the reverse
KL divergence can provide better approximation quality using normalizing flows. Yet also
the variational family itself can have a large influence on the resulting posterior.

We run SNVI with a mixture distribution variational family. Mixture distributions possess
the favorable property that different components naturally cover different modes. For
instance, consider a Gaussian mixture in which we initialize each component randomly.
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Figure A.9.: Results of SNLVI and SNRVI using a mixture variational family. We investi-
gate mixture of spline autoregresive flows (MoF, 4 components) and mixture
of Gaussians (MoG, 50 components). A shows results on two moons using
likelihood and likelihood-ratio estimation. B shows results on slcp using
likelihood and likelihood-ration estimation.

Similar to multi-chain MCMC, the different components will approach the nearest uncov-
ered mode of the posterior. As a result, the variational posterior will typically cover all
modes given enough components and a sufficiently diverse initialization. This is demon-
strated in figure A.8, even for the mode-seeking reverse KL divergence the variational
posterior covers both modes.

We compare a mixture of four two-layer spline autoregressive flows against a fifty-
component Gaussian mixture distribution. The results for SNLVI and SNRVI are shown
in figure A.9. We compare the reverse KL and the forward KL objectives, as well as
the implicit and explicit reparameterization on the mixture of flows on the reverse KL
divergence. For explicit reparameterization, we use 32 samples per component (i.e. in
total 128), whereas for implicit reparameterization we use 128 in total.

When using the reveres KL divergence, we observe a small benefit in comparison to flows.
This is because the corresponding variational posterior encompasses a broader range of
modes. In SLCP with four modes, however, this effect is insufficient to cover all modes
and would require more components (or a more sophisticated initialization). Even though
implicit reparameterization is often better than the explicit version, it is inefficient when
solving large dimensional problems (see SLCP). A major factor is that it requires the
computation of the Jacobian of the standardizing function, which is currently done by
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automatic differentiation, and thus requires d backward passes.

Consistent with our results on flows, the forward KL divergence outperforms the reverse
KL. Additionally, it does not require any form of reparameterization and is thus typically
more efficient. This is especially relevant using a mixture of Gaussians. The major
computational bottleneck of the forward KL divergence is that it requires the inverse
transform which is expensive for deep autoregressive normalizing flows (Papamakarios
et al., 2017). Yet for Gaussian distributions, it is comparably cheap, which explains the
big runtime improvements. In comparison to MoF’s (or a single normalizing flow), they
are less accurate.

We do jointly optimize all parameters of the mixture distribution. This approach is
typically known to be less stable to optimize (Jerfel et al., 2021), which we also observed
in our experiments. An alternative is known as variational boosting i.e. instead sequentially
add new components (Miller et al., 2017; Jerfel et al., 2021). At the first glance, this
may fit perfectly with SNVI i.e. adding each round a new component. Problematically,
current implementations can only “remove” bad components, by removing all previously
added components (as the parameter of all previous components are fixed). Yet in SNVI
components added in early rounds are by construction less accurate (as the likelihood is
less accurate). Investigation of more sophisticated methods for mixture distribution may
be worth, but is not within the scope of this work.

A.9. Experiments: Inference in a neuroscience model of the
pyloric network¶

We used the same simulator as in Gonçalves et al. (2020); Deistler et al. (2021) and the 15
summary statistics originally described in Prinz et al. (2004) and also used in Gonçalves
et al. (2020); Deistler et al. (2021) (notably, Gonçalves et al. (2020); Deistler et al. (2021)
used 3 additional features). Below, we describe the simulator briefly, for a full description
we refer the reader to Prinz et al. (2004); Gonçalves et al. (2020); Deistler et al. (2021).

The model is composed of three single-compartment neurons, AB/PD, LP, and PY, where
the electrically coupled AB and PD neurons are modeled as a single neuron. Each of
the model neurons contains 8 currents. In addition, the model contains 7 synapses. As
in Prinz et al. (2004), these synapses are simulated using a standard model of synaptic
dynamics (Abbott and Marder, 1998).

For each set of membrane and synaptic conductances, we numerically simulate the circuit
for 10 seconds with a step size of 0.025 ms. At each time step, each neuron receives
Gaussian noise with mean zero and standard deviation 0.001 mV·ms−0.5.

We applied SNVI to infer the posterior over 24 membrane parameters and 7 synaptic
parameters, i.e. 31 parameters in total. The 7 synaptic parameters are the maximal

¶Parts of this section are currently under review for publication and hence revised by Michael Deistler
and Jakob Macke (see https://openreview.net/forum?id=kZ0UYdhqkNY).

70

https://openreview.net/forum?id=kZ0UYdhqkNY


A.9. Experiments: Inference in a neuroscience model of the pyloric network

conductances of all synapses in the circuit, each of which is varied uniformly in the loga-
rithmic domain and the membrane parameters are the maximal membrane conductances
for each neuron. All membrane and synaptic conductances are varied over the same range
as in Gonçalves et al. (2020); Deistler et al. (2021).

The 15 summary features proposed by Prinz et al. (2004) are salient features of the pyloric
rhythm: Cycle period (s), three burst durations (s), two gap durations between bursts,
two phase delays, three duty cycles, two phase gaps, and two phases of burst onsets. Note
that several of these values are only defined if each neuron produces rhythmic bursting
behavior. In particular, we call any simulations invalid if at least one of the summary
features is undefined.

The experimental data is taken from file 845_082_0044 in a publicly available dataset
(Haddad and Marder, 2021).

For the likelihood-model, we use a Neural Spline Flow (NSF) with five autoregressive
layers. Each layer has two hidden layers and 50 hidden neurons, as implemented in the
sbi package (Tejero-Cantero et al., 2020; Durkan et al., 2019b). The posterior model is a
Masked autoregressive flow (MAF) with five autoregressive layers each with one hidden
layer and 160 hidden units.

We train a total of 31 rounds. In the first round we use 50000 simulations from which
only 492 are valid, and thus used to estimate the likelihood. For all other rounds we each
simulated 10000 samples. To account for invalid summary features, we use the calibration
kernel K(x,xo) = I(x is valid), hence can simply exclude any invalid simulations from
training the likelihood-model. By Theorem A.1 we have to correct the likelihood by
multiplication of Ex∼p(x|θ)[I(x is valid)] = P (x is valid|θ). To estimate this probability
we use a deep logistic regression net with 3 hidden layers each with 50 neurons and ReLU
activations. We train this classifier simultaneously with the likelihood-model, that is in
each round we add new data {(θi, I(θi is valid))}Ni=1 and retrain the classifier using the
weighted binary-cross-entropy loss. We weight the loss by the estimated class probabilities
to account for class imbalance, especially in early rounds. We fix the number of epochs to
200 per round. We use the fKL loss with N = 1024 samples, as well as SIR.

Note that training an additional classifier concurrently is computationally cheap. We
demonstrate this in Figure A.11, which becomes clear as training a simple feed-forward
neural net is cheap compared to a normalizing flow. This is particularly useful for
simulators that produce many invalid simulations, as these can be excluded from the
training dataset of the likelihood estimator. We hence increase computational efficiency
but not accuracy as invalid simulations are typically irrelevant to estimate the posterior
of a valid observation.

In total, the procedure took 27 hours, with the runs of the simulator being parallelized
across several nodes. Because of this, the runtime also depends greatly on the availability
of computing resources on the cluster.
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Figure A.10.: Posterior distribution for the neuroscience model of the pyloric network.
In Fig. 4.3B we show a subset. The black point is a mean estimate using
107 samples. The red point is a maximum a-posterior estimate, obtained by
gradient ascent.
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Figure A.11.: Runtime of the classifier cζ(θ) in the model of the pyloric network (90%
of simulations are invalid). Training the classifier is approximately three
times cheaper than training the likelihood-model (compare left bar to the
second left) and thus increases the computational cost only modestly. The
likelihood-model is trained only on valid simulations. The combined runtime
of classifier and likelihood-model (third bar) is still far less than the time
it would take to train the likelihood-model on all simulations (right bar.
To estimate the runtime of the likelihood-model on all simulations, we
substituted invalid simulation outputs (i.e. NaN) with an unreasonably low
value and trained on all simulations).
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