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Mathematisch-Naturwissenschaftliche Fakultät

Wilhelm-Schickard-Institut für Informatik

Bachelor Thesis Bioinformatics

The landscapes of CD8+ T cell

immunogenicity from a self-tolerance based

perspective in sequence space

Manuel Glöckler
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Abstract

Vaccination is one of the most successful medical treatments ever developed in
human history. Traditionally vaccines are produced from parts of microorgan-
isms or attenuated ones. However, this has several disadvantages in vaccine
production and administration. For example, only a small fraction of the
administrated material is relevant to induce an immune response; other re-
dundant material can cause major complications. These disadvantages can
be overcome with the use of synthetic peptide-based vaccines. Nevertheless, it
remains challenging to find highly immunogenic antigens necessary for efficient
vaccination. Thus, the development of methods that can accurately predict
immunogenicity is of great interest; however, the prediction remains challeng-
ing. For the prediction of immunogenicity, the mechanism of self-tolerance
is interesting. Immune cells reacting to self-antigens are negatively selected
during their development, known as central tolerance, or are suppressed by
regulatory mechanism, known as peripheral tolerance. Generally one would,
therefore, assume that an immunogenic antigen should differ more from self-
antigens than a non-immunogenic one.

This thesis investigates if this assumption can be observed through accu-
rate similarity measurements in sequence space and thus be utilized to predict
immunogenicity. We were able to show that a small set of experimentally
validated MHC binding self-peptides is representative for the immunological
relevant human proteome compared to comparable sets created through MHC
binding prediction. Further, we could show that for the most part, a differ-
ence in the similarity to self-peptides is present between immunogenic and
non-immunogenic peptides. For some HLA alleles, we detected a significantly
lower similarity to self-peptides between immunogenic and non-immunogenic
peptides. This scoring can be shaped by position-specific weights to obtain
for the majority of investigating HLA alleles a significantly lower median sim-
ilarity to self. Moreover, we investigated an alternative representation of pep-
tides with residue feature maps from the AAIndex. We additionally mined
for physicochemical properties of amino acid residues and could identify sev-
eral indices in the AAIndex database that show significantly higher distances
to self for immunogenic peptides. Furthermore, we determined peptide posi-
tional weight or feature maps that could boost the classification performance
of a simple classifier.
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Chapter 1

Introduction

In this chapter, the biological backgrounds of immunogenicity and its associa-
tion with self-tolerance are introduced in Section 1.1. Basic knowledge of this
subject is essential in order to understand the methods applied in this thesis
to model self-tolerance on a sequence basis. In Section 1.2, the scope of this
thesis and its relevance in bioinformatics are described.

1.1 Background

1.1.1 Immune system

The immune system protects the host from pathogenic entities. In vertebrates,
it can be divided into two parts, the innate and the adaptive immune system.
The innate immune system is the first line of defense and is made up of two
main components. First, barriers to prevent the ingress of pathogens. Sec-
ond, antimicrobial cells and molecules. The recognition of pathogens is mostly
based on germline-encoded receptors that were evolutionary shaped to rec-
ognize molecular patterns present on pathogenic microbes. Its specificity is
therefore constant over time and shaped to be self tolerant by evolution. Ad-
ditionally, it is unable to develop a memory and is, therefore, less relevant
in the context of vaccination. The most crucial part may be the presenta-
tion of antigens to induce an adaptive immune response through MHC class II
molecules. However, this thesis focuses on MHC class I presentation, which is
present on all nucleated cells and further explained in Subsection 1.1.2, thus
the innate immune response is of little interest in this thesis.

On the other hand, the adaptive immune system consists of two types of
lymphocytes, T and B cells. The antigen receptors for B cells are called im-
munoglobulins, which can be membrane bound as B-cell-receptor (BCR) or
secreted as antibodies. T cells only express a membrane-bound T-cell-receptor
(TCR) that is restricted to recognize peptide fragments presented by the ma-

1



2 CHAPTER 1. INTRODUCTION

jor histocompatibility complex (MHC). We call such a peptide immunogenic
or a T cell epitope if an immune response is induced. This MHC restriction
reflects the functional difference. B cells secrete antibodies, and T cells are
specialized for cell-cell-interactions, they either kill infected body cells (CD8+

cytotoxic T cells) or interact with other immune cells in order to coordinate
an immune reaction (CD4+ helper T cells). In contrast to the innate immune
system, the BCR and TCR are generated through a stochastic recombina-
tion process, called V(D)J-recombination. This process can generate a high
number of different receptors, and therefore, each mature T/B lymphocyte
expresses a different receptor. This diversity leads to the key principle for the
high adaptability of the immune system, called clonal selection. In each in-
dividual, regardless of antigenic contacts, there is a large number of T and B
lymphocytes. Because each cell expresses a different receptor, diversity at the
level of the cell population is created. If one of these cells has contact with a
suitable antigen, it proliferates and differentiates, creating a large number of
short-lived effector cells and some long-lived memory cells that remain in the
body and protect against a recurrent infection.

The different specificity of BCR and TCR implies that while BCRs can
recognize a high number of highly diverse antigens, the TCR is restricted to
peptides that are presented on MHC molecules. Therefore, this thesis focuses
on T cell immunogenicity, as the antigenic identity is well defined and can
be modeled more easily. It allows a sequence-based view of immunogenicity,
where we can compare amino acid sequences rather than complex antigens.
Additionally, the memorization through memory cells is the basis for all kind
of vaccination. Introducing a pathogen-associated antigen that can trigger an
adaptive immune response leads to the memorization of this antigen. If the
antigen associated pathogen then infects the vaccinated individual, the mem-
ory cells can trigger a fast and effective response, preventing the formation of
a disease. However, this adaptability comes at a cost. As receptors are cre-
ated randomly, there is a chance that they recognize host-associated antigens,
so-called self-antigens or in the context of T cell immunogenicity self-peptides.
Such autoreactivity can lead to autoimmune diseases. To sustain the host’s
viability, a highly effective self-tolerance evolved, which will be described in
the next section [MWSS18].

1.1.2 Self tolerance

Self-tolerance is defined as the ability of the immune system to recognize self-
produced antigens as a non-threat while simultaneously maintaining sufficient
immunocompetence. As T cells are MHC-restricted, the recognition of an
antigen is dependent on peptide MHC presentation. For MHC class I, the
peptides are usually derived from intracellular proteins in the cytoplasm. The
proteasome processes these and TAP transports the peptide into the endo-
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plasmatic reticulum. There they are loaded onto MHC class I molecules and
transported to the cell surface. As such cytoplasmic proteins are either self-
derived or from an intracellular infection, such pMHC class I complexes are
recognized by cytotoxic killer cells that kill the corresponding cell if this pep-
tide is recognized as a threat. As we restrict to MHC class I peptides in this
thesis, we also only consider CD8+ T cell immunogenicity; the correspond-
ing TCR-pMHC interaction is discussed in Subsection 1.1.3. Since both self
and foreign antigens are presented on MHC molecules, the immune system
developed two main mechanisms to maintain self-tolerance — the central and
peripheral tolerance [MWSS18].

Central tolerance

T cells develop from a lymphoid predecessor in the thymus. In this tis-
sue, a unique T cell receptor is created randomly through V(D)J recom-
bination. In early T cell development, the T cells with TCRs that inter-
act weakly/intermediately with self-peptide-MHC complexes are positively se-
lected through survival signals. This process ensures that the selected T-cells
will have a sufficient MHC affinity, as a T cell have to interact with pMHCs for
activation (MHC restriction). In a later stage of T cell development, T cells
that strongly interact with self-peptides are negatively selected by apoptotic
signals. This selection prevents the formation of self-reactive T cells that are
capable of inducing an autoimmune disease. The mature T cell repertoire is,
therefore, dependent on host proteome. However, a too strict selection would
weaken immunocompetence, and therefore, some self-reactive T cells escape
thymic selection, leading to the next mechanism of self-tolerance [MWSS18].

Peripheral tolerance

An additional mechanism of tolerance in the mature lymphocyte repertoire
after the cells have left the central lymphatic organs is called peripheral
tolerance. Fundamentally there are always at least two signals needed for T
cell activation. Danger signals must accompany the TCR recognition of a
specific antigen. The innate immune system transmits these only in case of
tissue damage or infection. Since self-peptides are generally not accompanied
by danger signals, an autoreactive T cell usually receives no costimulation.
The missing costimulation prevents activation, and the cell goes into an
inactive state called anergy. If it still comes to activation, other mechanisms
may prevent an autoimmune reaction, for example, through inhibition by
regulatory T cells [MWSS18].

By considering in this context an arbitrary peptide, we would expect a lower
immunogenicity for peptides that are similar to self-peptides, as we would
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expect from a distant one. As self-peptides shape the T cell repertoire, it is
less likely that a TCR recognizing a peptide similar to self exists. Additionally,
even if such a peptide is recognized, the autoreactive T cell is likely inhibited
by mechanisms of peripheral tolerance.

1.1.3 T cell receptor recognition

As discussed in the previous section, we would expect a lower immunogenicity
for peptides that are similar to self-peptides. However, defining this similar-
ity is not trivial because the TCR interaction with the peptide determines
it. In other words, a T cell can only distinguish differences in peptides, if
the TCR can perceive these differences. Hence the molecular mechanism of
peptide recognition is essential to understand and discover features that affect
recognition and, therefore, define how similar two peptides appear for a given
TCR.

While the mechanisms of TCR recognition are still under research, from
several crystal structures of TCR-pMHC complexes and other studies, some
potential properties of TCR recognition were obtained. These showed that
while TCRs bind in a conserved diagonal footprint to the pMHC complex,
the atomic interaction varies widely [GTW99]. As MHC class I peptides are
usually anchored at the peptide residue position two (P2) and position nine
(P9), there is often a central bulge which dominates the interactions with
the TCR. For nonamer peptides, these are represented mostly between P4-
P8 [RW02, CdBK12, GTW99]. For MHC class II, the peptide has a con-
served polyproline type II conformation, and the critical side chain interac-
tions are more uniformly distributed [RW02, GTW99]. However, in both
cases, the up-facing sidechains dominate TCR interaction, and only a weak
contribution of the peptide’s backbone was observed [GTW99]. This indi-
cates that MHC bound peptide conformation is associated with immunogenic-
ity. It has been observed that the same epitope can differ in immunogenic-
ity for HLA subtypes, which only differ by a single amino acid. This be-
havior was not caused by differences in MHC presentation , rather by the
conformation of the peptide [TEP+05]. Additionally, local conformational
changes through the binding to the pMHC class were observed, that may
play a part in expanding TCR specificity [GTW99]. This flexibility may ex-
plain degenerated T cell recognition. T cells are cross-reactive and can rec-
ognize both similar and sometimes very different peptides presented on MHC
molecules [CdBK12, FdBL+08, WAC+07]. It has been shown that a non-
americ peptide contains enough information to differentiate between self and
nonself peptides with a rather small identical overlap of 0.2%, calculated from
the overlap of the human and several thousands of viral and bacterial pro-
teomes. However, through the flexible recognition of the TCR, about one
third of the nonself peptides is expected to be indistinguishable from self-
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peptides [CdBK12, MWSS18]. This degeneracy is especially interesting in
terms of self-tolerance, as T cells should remain tolerant against this huge
fraction of nonself peptides. It was shown that similar amino acid substitu-
tions do not perturb T cell specificity, which further establishes that T cell
epitopes should have low similarity to self-peptides [FdBL+08]. However, de-
generated T cell recognition was also observed for peptides with low peptide
similariy [WAC+07].

1.1.4 CD8+ T cell epitopes

In summary, we can collect factors that distinguish MHC class I epitopes from
non-epitopes. First, the abundance of pMHCs [KSW+08], the more pMHCs
are expressed by the cell, the higher the chance that a T cell can recognize
the corresponding antigen. Therefore a potential T cell epitope must be able
to bind to an MHC sufficiently good. Additionally, the MHC binding has to
be stable, as increasing half-life leads to an increased chance of T cell recogni-
tion [HRR+12, SVR+94, KSW+08]. Secondly, the peptide has to be recognized
by a TCR, i.e.; it should be immunogenic. Thirdly even if a peptide is pre-
sented under the right conditions, if it is too similar to self, it may be blocked
by mechanisms of peripheral tolerance.

We can conclude several critical factors that differentiate epitopes from non-
epitopes on a sequence basis. Given an arbitrary peptide sequence, we first
have to prove that it can bind to an MHC molecule, as peptides that do not
bind on MHC molecules can not induce an immune response and can, therefore,
be classified as non-epitopes. As sequence motifs determine MHC binding,
some highly accurate binding predictors can satisfy this requirement [JPA+17].
Self-derived peptides that undergo MHC processing, transport and binding
and are not only expressed in immunologically privileged tissues, shape the
mechanisms of self-tolerance and are therefore most likely non-epitopes. A non-
self peptide that is similar to such self-antigens, and thus indistinguishable for
a T cell from self, should also be subject of self-tolerance and therefore should
not represent an epitope [FdBL+08]. Accordingly, a CD8+ epitope must fulfill
the MHC presentation criteria and should be less similar to self-antigens as
an MHC presented non-epitope, as otherwise, it should be subject of self-
tolerance, too. However, the similarity is determined by the highly complex
and degenerated T cell recognition mechanism. Modeling this accurately from
sequence information is difficult; nonetheless, we can model several properties,
e.g., residue position, residue similarity, and several physicochemical properties
that have been associated with immunogenicity [CMG+13, FdBL+08, RW02].
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1.2 Scope of this thesis

In order to develop a computer-aided system of peptide vaccine design, an
accurate model of MHC peptide processing, presentation, and immunogenic-
ity is needed. Many studies for MHC processing and presentation lead to
powerful prediction tools that are nowadays well established. While binding
affinity is a requirement for immunogenicity, its correlation with it is too weak
to achieve a good predictive performance. It has been shown that binding sta-
bility correlates better with immunogenicity, but still not good enough for an
accurate prediction [HRR+12, SVR+94]. However, these approaches only focus
on good presentability of a peptide to T cells and therefore neglect the sec-
ond requirement - TCR recognition. Early methods used sequence information
of immunogenic and non-immunogenic peptides but could not obtain suitable
predictive performance [TH07]. Newer approaches included systemic effects
such as self-tolerance and could achieve better performance on a small but
qualitative dataset [TFZ+11]. The latest approach quantifies immunogenicity
by modeling TCR-pMHC contact potentials in sequence space [OY18]. How-
ever, a great breakthrough was not obtained by either of these approaches.

Additionally, Bresciani et al. associated immunogenicity of MHC class II
peptides with a significantly lower median peptide similarity to the host’s pro-
teome [BPS+16]. If MHC class I peptide similarity to self can be assessed sim-
ilarly on a sequence basis is an open question. As MHC class I peptide binding
affinity is more predictive than that of MHC class II, the modeling of MHC
restrictions is more reliably. Further, a recently obtained mass spectrometry-
based HLA ligandome may allow for a more representative set of relevant
self-peptides, as these peptides were observed to be presented on living self.

All in all, this raises several questions that will be answered by this thesis:
Can MHC class I peptides be associated with a lower median peptide simi-
larity to the relevant host proteome? Can the HLA-Ligandome represent this
relevant proteome? Are there features that can more accurately describe the
similarity of peptides to the TCR, based on the fact that the immune system
has to distinguish epitopes from self? Can we reliably predict immunogenic-
ity based on the expected differences between epitopes and non-epitopes to
self-antigens?



Chapter 2

Methods and Material

As described in Chapter 1, self-tolerance describes the capability of the im-
mune system to distinguish self from non-self and eliminate or inhibit self-
reactive T cells. Therefore, MHC presented peptides that are very similar to
self-peptides, are unlikely to induce a T-cell response and thus should have low
immunogenicity. For a sequence-based analysis of self-tolerance, we, therefore,
need a representative set of peptides from the human self-proteome, an ad-
equate measurement of peptide similarity and a set of peptides with known
immunogenicity. In this chapter, it is clarified in Section 2.1, which data sets
for self proteome representation and immunogenicity were used. Secondly, the
used similarity and distance metrics, as well as the implemented computational
methods, will be described in Subsection 2.2.1 and Subsection 2.2.2. Thirdly
an optimization technique based on a genetic algorithm will be introduced in
Subsection 2.2.3, in order to optimize defined scoring metrics for a more potent
measurement of the similarity to the self proteome.

2.1 Material

In the following section, we will describe three different ways of self proteome
representation. Additionally, to associate immunogenicity with similarity to
self, we need a set of peptides that are known to be immunogenic or not. The
chosen dataset will be described in Subsection 2.1.2.

2.1.1 Self-proteome datasets

As described in Chapter 1, a requirement for a T-cell response is the pre-
sentation of a peptide on an MHC molecule. Therefore the sequence space
of the human proteome can be reduced to the set of peptides that bind to
MHC molecules. Three sets are used in this thesis: One experimentally vali-
dated set of peptides that are presented by MHC molecules on living cells, the

7
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HLA-Ligandome. Second, a set of peptides from the human proteome that are
predicted to bind to MHC molecules mentioned as the predicted proteome.
Third, a collection of predicted MHC binding peptides that are expressed in
the thymus mentioned as predicted thymus proteome.

HLA-Ligandome

The ligandome is an experimentally validated set of MHC binding peptides.
Samples were obtained from different human tissues, except the thymus. From
the extracted living cells, all pMHC complexes were collected, and MHC class
I and II complexes were separated. The peptides were isolated from the MHC
molecules, and the peptide sequence was determined through mass spectrom-
etry. This allows determining peptides that are actually present on cell sur-
faces. These peptides successfully undergo the peptide processing machinery
and bind sufficiently well to MHC molecules to be presented on the cell sur-
face. However, this method does not allow to determine the HLA allele of the
MHC molecule involved in the complex. To map the obtained peptides to HLA
alleles, binding affinities were predicted using NetMHCpan 4.0 [JPA+17]. This
process is described more detailed by Mayer et al. [BNB+19]. While using the
same process, this inhouse dataset comprises measurements from healthy cells
and is not yet publicly available at the time of writing.

The data set was filtered for MHC class I nonameric peptides. Duplicate
entries were removed. This lead in total to 44,466 MHC class I peptides. As
the HLA alleles are unevenly covered, only those who are well represented
across all datasets were selected. This is mainly shaped by the number of
peptides for that T cell assay results are available, as research is focused on
special HLA-alleles, e.g., HLA-A*02:01. The selected alleles and their peptide
frequencies are shown in Figure 2.1. In total, the filtered dataset includes
19,646 peptides.

Predicted ligands from the human proteome

The human proteome was obtained from Uniprot (ID: UP000005640, 16. May
2019) [Con18]. The state of the art MHC class I predictor NetMHCpan 4.0
was used for MHC binding prediction [JPA+17]. Because this thesis focuses on
nonameric peptides, all 9-mers of the human proteome were predicted using
the Python interface epitopepredict. This was done for all investigated HLA
alleles.

Only peptides binding to MHC molecules can affect T-cell selection. As
recommended by the NetMHCpan authors, we introduce a percentile rank
cutoff at a percentile rank score of two. This lead, in mean, to 280,414 peptides
per allele. As these peptides can be expressed in all tissues of the human
body, this dataset should model peripheral and central tolerance explicitly.
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The created set should represent a superset of the HLA-Ligandome as well.
On average 95% of the peptides in the HLA-Ligandome are present in this set
too. We will refer to this set as the predicted proteome in further sections.

Predicted thymus proteome

This set was used to evaluate a self-tolerance based T-cell epitope predictor and
showed best performance. The dataset contains whole-genome microarray data
from the NCBI Gene Expression Omnibus and the EBI ArrayExpress database.
Because of conflicting measurements regarding the presence of proteins, the
data was filtered to contain only proteins that are present and marginally
expressed in the thymus [TFZ+11].

For all 9-mers in the obtained proteins, the MHC binding affinity was
predicted as described above. We obtained, on average, 8460 MHC binding
peptides. The allele HLA-A*11:01 was underrepresented with only 466 MHC
ligands. This set of peptides now represent the peptides that are present in
the thymus and therefore models explicitly central tolerance. Implicitly this
also models peripheral tolerance as these proteins can also be present in the
periphery. The HLA-Ligandome does not contain samples from the thymus;
thus, there is only an overlap of 3%.

2.1.2 Immunogenicity dataset

A recently released paper by Ogishi et al. [OY18] analyzed the immunogenic-
ity in sequence space. In this project, peptides with functional T cell as-
say were collected from public databases (e.g., IEDB, LANL, HIV sequence
Database, LANL HCV, EPIMHC, TANTIGEN, and data from several papers).
For IEDB, peptides with inconsistent assay results were classified as immuno-
genic if at least one positive functional T cell assay exists. Peptides presented
on nonhuman MHC molecules were excluded, while peptides presented on HLA
in nonhuman hosts were included (e.g., transgenic mouses).

In terms of our analysis, this dataset was again filtered for nonameric MHC
class I peptides. Because this thesis focuses on human self-tolerance, peptides
from HLA in nonhuman host should be excluded as tolerance is shaped by
the host’s proteome. Therefore peptides were evidence for immunogenicity
was only obtained in nonhuman hosts were excluded. However, the dataset
contained some peptides with unannotated host’s. These peptides were not
extracted from IEDB instead from other databases or research project that of-
ten do not include host origin in output formats. Only the best-characterized
epitopes were included from these databases. As the authors did not mention
the inclusion of non-human hosts for these databases, we included these pep-
tides into our analysis [OY18]. The frequency distribution of HLA alleles in
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this data set is shown in Figure 2.1 for immunogenic and non-immunogenic
peptides.

a

c

b

Figure 2.1: (a) The number of nonameric peptides for the selected HLA al-
leles in the HLA-Ligandome and for the immunogenic and non-immunogenic
peptides. (b) The predicted binding affinity score obtained by NetMHCpan
4.0[JPA+17] for the HLA-Ligandome, the predicted proteome and the predicted
thymus peptides. (c) The predicted binding affinity score obtained by NetMHC-
pan 4.0[JPA+17] for all immunogenic and non-immunogenic peptides.

Some peptides were labeled with inconclusive MHC notation (e.g., HLA-
A, A1, B15 or NA). Only peptides which are mapped unambiguously to an
HLA-subtype where included. As binding motifs of MHC molecules vary even
for HLAs with a common supertype, including them would lead to noise in the
data. Dissimilarities across peptides can then be explained by different HLA
binding motifs instead of immunogenicity [JPA+17].

Another requirement for our analysis is MHC binding. For some peptides,
MHC binding evidence was given through MHC binding assays or MHC bind-
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ing prediction. Around 33% of selected immunogenic and 5% of selected non-
immunogenic peptides had annotated MHC binding assays. Unfortunately,
for many peptides, there was no binding evidence annotated. However, for
positive T cell assay result, we can assume MHC binding as otherwise, the
assay should be negative. For non-immunogenic peptides, this is not the case;
therefore, all immunogenic and non-immunogenic peptides binding affinity was
scored using NetMHCpan 4.0 [JPA+17] for their labeled allele. The obtained
distributions are shown in Figure 2.1 c. For all HLA alleles, the immunogenic
peptides had a slightly higher score than non-immunogenic ones. As bind-
ing affinity and stability correlate with immunogenicity, we can expect such a
behaviour [HRR+12, SVR+94]. As the range of binding affinity scores for non-
immunogenic peptides does not differ strongly from immunogenic peptides,
these peptides were included even if no MHC evidence was annotated.

2.2 Methods

In the previous section, we described the collected data to represent the human
proteome that is immunologically relevant for CD8+ T-cell immunogenicity. If
a peptide is similar to a peptide in these sets, we can expect that mechanisms of
self-tolerance inhibit immunogenicity. This refers to the (k)-nearest-neighbor
problem, given a suitable metric. We first defined a BLOSUM similarity score
and introduced a trie-based branch and bound mechanism to solve the nearest
neighbor problem in a suitable time. The used methods are described in Sub-
section 2.2.1. As an alternative approach, we also implemented the ability to
describe peptides as numerical feature vectors based on residues feature maps
form the AAIndex database. Thereby we can solve the (k)-nearest-neighbor
search in numerical space with, e.g., the euclidean distance. Such residue fea-
ture maps can describe special physicochemical properties, and the nearest
neighbor problem can be solved efficiently by KDTrees or Locality sensitive
hashing (LSH). These algorithms and the scoring method are introduced in
Subsection 2.2.2. To search for position-specific weights or relevant chemical
properties, a genetic algorithm is introduced in Subsection 2.2.3.

2.2.1 Sequence similarity measurement

To compare the similarities of two peptides, we need to define a similarity score.
A straightforward approach would be to count the different amino acids in the
two sequences. However, this would neglect the physicochemical properties of
different residues. We would expect a higher similarity comparing amino acids
with similar properties as ones with different ones.
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BLOSUM similarity score

A popular method to account for this is the use of scoring matrices, for ex-
ample, the BLOSUM similarity matrix. These reflect log-odds scores of the
substitution probabilities in conserved regions of protein families and therefore
also reflect physicochemical properties of amino acid residues. As for substitu-
tions of amino acids with similar properties, it is more likely to have a smaller
impact on the structure and function of a protein than a replacement with an
amino acid with different properties. Therefore we could define the similarity
of two peptides as the sum of the corresponding BLOSUM scores. This will
have the unfavorable effect that equal peptides have not necessarily the high-
est score. For this and the sake of comparability, this score is normalized as
proposed by Bresciani et. al [BPS+16]. For two given peptides A = a1 . . . an
and B = b1 . . . bn of length n, the BLOSUM similarity score is given as

s(A,B) =

∑n
i=1 bl(ai, bi)√

(
∑n

i=1 bl(ai, ai)) · (
∑n

i=1 bl(bi, bi))
(2.1)

in which bl(x, y) is the BLOSUM62 score for the residue pairs x and
y [HH92, BPS+16]. Now an identical match has a similarity score of 1.0,
and the scores are normalized to a range between -1 and 1.

Similarity to self

Given the defined similarity measure, the similarity of a peptide to a set of
peptides representing all self-peptides can be defined as the highest pairwise
similarity to one of the peptides in this set. In other words, the nearest-
neighbor problem has to be solved. Alternatively, we can also consider the
k closest neighbors, leading to the k-nearest-neighbor problem. This allows
considering peptides that are sufficiently similar but not the most similar, as
self-tolerance may not only be dependent on the most similar, rather a set of
highly similar peptides.

As shown in Section 2.1, the number of peptides representing the self-
proteome can reach up to several hundred thousand. Therefore solving the
(k)-nearest neighbor problem naively for several thousand query peptides is
computationally expensive. In order to reduce time complexity, a trie based
branch and bound algorithm was implemented. A trie is a special search tree
representing a set of strings. Each string is represented as a path from the trie
root to a leaf. Strings with a common prefix share the same path. Be k the
length of n strings represented by a trie. Given a query string q of length k,
finding an exact matching string requires a traversal from the root to a leaf.
If for all characters in the query a path exists in the trie, the query string
is contained in the trie. This leads to time complexity of O(k), compared to
O(n) time for a linear search. As k is in our case substantially smaller than
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n, finding an exact match is substantially faster. Given an adequate scoring
matrix, like BLOSUM62, we can find the nearest neighbor by computing the
score for all paths to a leaf in the trie. However, we can prune entire branches
of the trie if the maximal obtainable score of a shared prefix is less then a score
of the query with a complete peptide. This base idea is shown in Figure 2.2.
For an additive similarity score and a given query peptide, we can define the
maximal obtainable score between a query and a prefix from the search space,
as the score between query and prefix plus the score of an identically matching
suffix. The highest similarity of amino acid pairs is obtained from an equal
match; therefore, an adequate similarity matrix should satisfy this condition.

The similarity score defined in Equation 2.1 is not additive in a straightway.
Nevertheless, the sums of the BLOSUM62 scores are additive, and therefore,
we calculate the bound as following:

• Because calculating the square root is computationally expensive we use
for bounding the term

s(A,B)2 =
(
∑n

i=1 bl(ai, bi))
2

(
∑n

i=1 bl(ai, ai)) · (
∑n

i=1 bl(bi, bi))
. (2.2)

The BLOSUM similarity score can then be obtained by rooting the value
of Equation 2.2.

• Given is a query A = a1 . . . an and a prefix B = b1 . . . bm of a sequence
contained in the trie with m < n. Such a prefix is represented as a path
from the root to an inner node. We define the maximum obtainable score
as

bound(A,B) =

(∑m
i=1 bl(ai, bi) +

∑n
j=m+1 bl(aj, aj)

)2(∑n
i=1 bl(ai, ai)

)
·
(∑m

i=1 bl(bi, bi) +
∑n

j=m+1 bl(aj, aj)
) .

(2.3)

The prefix of A and B is static, and the BLOSUM62 score can be calculated
as usual. However, the suffix of B is unknown. Nevertheless, the highest
obtainable similarity score for the given prefix is obtained, if the suffix match
with that of the query A. If the thereby obtained maximal obtainable score
is smaller than the score of a complete word, we can stop the search in this
branch.

To find k-nearest-neighbors with this approach, firstly the best nearest
neighbor is computed. To find the second-best nearest neighbor, the already
found best neighbor is excluded from bounding. As the trie was already tra-
versed hopefully using several bounds, the second-best bound can be reused
in the search for the next nearest neighbor. Nevertheless, for increasing k,
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WWW, WWA, WAG, AAG, AAW

Example query: WWG

10+15
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11+5<21

1+15<21

Figure 2.2: An example trie for the strings WWW, WWA, WAG, AAG,
and AAW with an example scoring matrix. To find the nearest neighbor for
the query peptide WWG, we start at the left branch and compute the score
sc(WWW,WWG) = 19 by traversing the trie to the first leaf. The current
bound is now 19. Because in this branch are still leaves, we traverse back and
consider the next leaf. As sc(WW,WW ) + sc(G,G) = 25 there may be a better
suffix in this branch, we detect that sc(WWA,WWG) = 21 is truly better and
therefore update the bound. For the next branch the highest obtainable score
is sc(WA,WW ) + sc(G,G) = 16. As a higher score was already found, we can
skip his branch. The next branch can be skipped again, leading to the nearest
neighbor WWA with a score of 21.
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the bounds get worse, and an increasing number of nodes has to be traversed.
Thereby for big k’s, it can be faster to compute all scores in a naive way, sort
them and get the k highest scoring peptides.

Additionally, this method allows the use of position-specific weights. This
is in our interest because as discussed in Subsection 1.1.3, the contacts with
the TCR are not equally distributed over all peptide positions. Therefore it is
maybe useful to weight functional hotspots higher than areas that have only
minor influence in TCR recognition.

Problematic is the comparison of peptides with unequal length. First,
the mechanism of extending peptide length in the MHC binding groove is
mostly central bulging [SPHB00]. This leads to a different pMHC interface as
residues that bulge out of the groove interact most with the TCR [RW02]. This
questions if peptides without the same size are comparable. Second, a gap has
to be introduced; however, as these peptides are bound to the MHC molecule
in a fixed orientation and interact with specific positions that differ between
peptides with unequal length, the gap placement is hard. A gap indicates
that this position is not relevant for immunogenicity. However, which residues
should be gaped is unknown and can not be obtained from a raw amino acid
sequence, thereby structural information is necessary. If a simple alignment is
done, then the gap is placed so that the global score is maximized. This can
score peptides higher that are actually different from the perspective of a TCR.
As this is impossible to model accurately only from sequence information, we
reduced the problem to find the highest-scoring consecutive substring and hope
that peptides that have highly common substring interact similarly with the
TCR. Because MHC class I binding peptide length is usually between eight
and eleven [SPHB00]. We, therefore, compute the BLOSUM similarity for
MHC binding peptides as following. Given a query peptide and a search space
of peptides that have a length between eight and eleven, we search for the
highest-scoring 8 to 11-mer between the query and peptides in the search
space. Is the query for example of length ten, then it consists of three 8-
mers, two 9-mers, and one 10-mer. The nearest neighbor in the search space
is, therefore, the highest-scoring 8, 9, or 10-mer that is present in one of the
strings in the search space. However, solving this problem with a trie would
neglect all time benefits, as for all non-prefix substrings the trie data structure
will not boost the performance. We, therefore, just maintained all possible 8,
9, 10, and 11-mers of the search space in the trie. The nearest neighbor for a
query peptide can then be obtained similar to the length invariant algorithm
by finding the nearest neighbor of all 8, 9, 10 and 11-mers of the query peptide,
returning the longest highest-scoring k-mer found in the trie. Nonetheless, this
does not accurately model the consensus view that variations in peptide length
are possible through a central bulging mechanism with anchor residues still at
peptide position two and the C terminal end. However, in some cases, it has
been shown that protrusion is the mechanism of extension, which would be
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modeled reasonably well [SPHB00].

All in all, this leads to good time improvement, especially for a high num-
ber of peptides. However, the similarity computation through scoring ma-
trices severely limits the possibilities. Especially in comparison to numerical
space, where highly efficient nearest-neighbor algorithms are available. This
fact makes a mapping of amino acid sequences into numerical vectors attrac-
tive, leading to the next section.

2.2.2 Feature mapped sequence distance measurement

In contrast to the sequence comparison with scoring matrices, another widely
used technique is to encode a given peptide with a numerical feature vector.
This has the advantage that we can choose from arbitrary mappings of amino
acids to numerical value’s, representing specific physicochemical properties.
The AAIndex is, for example, a database that contains over 500 such amino
acid indices [KK00]. One possible representation is presented in Section 2.2.2.
Because a sequence is now represented as a numerical vector, several efficient
nearest neighbor algorithms are available and will be discussed here.

Residue feature distance score

There are several ways of encoding a peptide as a numerical vector. Generally,
an amino acid sequence of length n is mapped into a numerical vector v ∈ Rm,
where m can be smaller or substantially greater than n. One method used in
this thesis is with multiple amino acid indices from the AAIndex database. One
AAIndex maps every amino acid to a real number and therefore one possible
encoding is to map a given peptide of length n to a vector v ∈ Rn [KK00]. One
index often represents only a single property, but sometimes it is necessary to
consider multiple properties. We can represent a peptide of length n, encoded
by k indices, as a vector v ∈ Rn·k. If feature maps have a different range of
values, this leads to an unequal weighting of different features. If this is not
desired, then mappings should be normalized.

As the corresponding peptides are now represented as numerical vectors,
we can define the distance between peptides as the distance between the en-
coded feature vectors represented by a proper distance metric. We choose the
euclidean distance. For two given vectors v, w ∈ Rn it is defined as:

d(v, w) = ||v − w||2 =
√

(v1 − w1)2 + . . . + (vn − wn)2 (2.4)

Feature encoded peptide distance to self

As for the similarity, the distance to self can be defined as the lowest pair-
wise distance to a self-peptide, which again represents the (k)-nearest-neighbor
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problem. Since the peptides are now encoded as numerical vectors, and a
proper distance metric is used, there are several powerful ways to solve this
problem.

If n peptides can be described by n real values, we can sort the set in
O(n log n) time and search a query in O(log n) by binary search. If n peptides
are described by n k-dimensional vectors, we can similarly construct a tree,
where we start at the top node and decide at each node if the query object is in
the left or right branch. This solves the query problem in O(log n) and leads to
the k-d tree algorithm. Thereby the nearest neighbor problem can be solved in
O(log n). However, in high dimensional space, we mostly end up testing nearly
all nodes, and the complexity grows to O(n) [SC08]. Therefore a hashing
technique for a fast approximate nearest neighbor search was implemented,
which will be described in the next section.

Locality sensitive hashing

As optimal nearest neighbor methods struggle with the curse of dimensionality,
a common technique is to create a hashing function that separates search
space into bins. The nearest neighbor for a query can then be obtained by
determining the nearest neighboring element in its corresponding bin. In the
sight of nearest neighbor search, we want therefore a hashing function that
hashes a query point into a bin that contains points that are close to the query,
as these are potential nearest neighbors. One technique is locality sensitive
hashing (LSH), and the chosen implementation is introduced now.

The fundamental principle of LSH is that if two points are close together
and a projection operation is applied, it is likely that the projected points
are still close to each other. This can easily be visualized in two-dimensional
space, as shown in Figure 2.3. If we linearly project points to a random line
that is divided into quantification buckets of width w, we observe that two
distant points are only likely to fall into the same bucket, if the projection line
is approximately orthogonal to these points. For the most other orientations,
the points will fall in different buckets. This allows hashing high dimensional
points into bins where points that are less distant to each other are likely to
fall into the same bin.

Formally this can be implemented as follows. The core of the hash functions
is a scalar projection or dot product with a projection vector drawn from a
standard normal distribution N (0, 1). To quantify this into buckets that are
represented by an integer, we choose the following hash functions:

h~v,b(~x) =

⌊
~x · ~vT + b

w

⌋
(2.5)

where w is the quantization bin width, b a random variable uniformly drawn
from [0, w], ~x the vector to hash and in our case representing the peptide. The
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Figure 2.3: Two different scalar projections on V1 and V2, are shown. These
are separated into quantification bins of width w. Data points (blue, A-G) that
are close to each other fall into the same or in neighboring bins for both projec-
tions. For a given query point (red), we hash it with the same projections. As
observable, the query is mapped to the same bucket as the real nearest neighbor
D for the projection V2. For V1, it falls into an empty bucket; nonetheless, the
true nearest neighbor is in the next closest occupied bin.

elements of the projection vector ~v are independently chosen from a Gaussian
normal distribution.

That such a random projection hash points that are close to each other with
a high probability into the same bucket is visualized in Figure 2.3. However,
formally, this is caused by a property of Gaussian normal distributions called
p-stability. A distribution D is p-stable if for any independent identically
distributed random variables V1, . . . , Vn distributed according to D and any
real numbers x1, . . . , xn, the random variable

∑
i xiVi is distributed as(∑

i

|xi|p
) 1

p

V.

The random variable V is distributed according to D. A Gaussian probability
distribution is 2-stable. Given two points p, q and the hash function h defined in
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Equation 2.5, this property leads to the following: The hash function projects
the points p, q onto a real line as illustrated in Figure 2.3. From p-stability
follows that for two points with a corresponding distance ||p−q||2 to each other,
the distance between their projection (p~v − q~v) is distributed as ||p − q||2V ,
where V is a Gaussian distributed random variable [DIIM04]. If we chop this
projection line into bins of width w the projected points are likely to fall in
the same bin if they have a low distance to each other. We can conclude
that if p, q are close to each other, there is a high probability P1 that they
fall into the same bucket. For points that are far from each other, there is
a lower probability P2 that they fall into the same bucket. We can increase
the separation of points that are more distant to each other by performing k
independent dot products. As P1 > P2 this increase the ratio that points at

different distances fall into the same bucket, as
(

P1

P2

)k
> P1

P2
. This will decrease

the bin size and increase the number of bins, as only less distant points will
likely fall into the same bin. However, this also decreases the probability that
close points fall into the same buckets, as P k

1 < P1. To neglect this effect, L
independent projections are made, as it is unlikely that true near neighbors
are not in the same bucket in all L projections. Increasing the bucket width w
will lead to an increasing number of points in the bucket [SC08, DIIM04].

To solve the nearest neighbor problem given a set of self-peptides S and a
query q represented as real vectors, we now can compute the nearest neighbor
as following:

1. Hash each self peptide s ∈ S with k independent hash functions, as
defined in Equation 2.5, into buckets characterized by a key k ∈ Nk.
Save this hashing in a hash table H.

2. Create L hash tables H as described above.

3. Given a query q we compute for each hash table H the corresponding
hash keys k1, . . . , kL. For all self-peptides s ∈ h(k1), . . . , h(kL) we can
compute the nearest neighbor with an optimal method of choice. If all
bins are empty, we search for the next closest bin and perform a nearest
neighbor search there.

All in all, the search space is thereby reduced to the number of elements
contained in these bins. We also ensure that the actual nearest neighbor is
likely to be in this set, which can be further increased, by increasing L or
the bin width w to an almost optimal nearest neighbor algorithm. Even if
the method fails to find the true nearest neighbor, most likely a point that is
close to the query is returned. Increasing k leads to a decrease in the number
of elements per bin and therefore to benefits in computation time. With a
good combination of these parameters, we can obtain a highly accurate and
time-efficient nearest neighbor search for an arbitrarily large search space.



20 CHAPTER 2. METHODS AND MATERIAL

2.2.3 Evolutionary algorithm

In the sight of self-tolerance, we would expect immunogenic peptides to be less
similar to self-peptides. However, as explained in Subsection 1.1.3 this simi-
larity is determined by the TCR. As TCR interaction varies between residue
position, the similarity between peptides is dependent on similarities between
specific peptide positions. Additionally, immunogenicity has been associated
with chemical properties, and therefore, special residue features may play a
role in TCR recognition [CMG+13, CdBK12, FdBL+08].

On an MHC binding nonameric peptide, each position has a different in-
fluence on immunogenicity. For example, P2 and P9 are often anchor residues
and necessary for MHC binding. On the other hand, peptide conformation
can vary strongly in MHC class I with TCR interacting residues mostly be-
tween P4-P8 [CdBK12, RW02]. We are interested in residues positions that
are associated with immunogenicity, not MHC binding, as all peptides are al-
ready binders. Some residues have less interaction with TCR and are therefore
assumed to have less impact on immunogenicity [CdBK12]. Such position-
specific relevances can be modeled with position-specific weights. Residue
positions with high weight resolve high match rewards, but also high mis-
match penalties, according to the defined BLOSUM-based similarity score.
The nearest neighboring self-peptide would, therefore, contain most likely a
similar amino acid residue at a high weighted position. If we weight the right
positions high, we can more accurately describe residue positions that are
more relevant for TCR recognition. On the other hand, we can model rele-
vant physicochemical properties of amino acid by describing the corresponding
peptides with different feature mappings, e.g., as defined in Subsection 2.2.2.
Immunogenicity has not been associated with a single AAIndex [CMG+13];
however, a combination is may feasible.

Finding such combinations of physicochemical properties or position-
specific weight refers to an optimization problem. As we expect lower sim-
ilarity to self for immunogenic peptides, compared to non-immunogenic ones,
we can try to optimize this expectation for the underlying data. How-
ever, such optimization is hard as the search spaces are huge. The AAIn-
dex consist of approximately 500 different indices and therefore we obtain
500 · 499 · 498 · 497 · 496 ≈ 1013 different distinct combination of five indices.
If we restrict the position-specific weights to five integer values, we obtain
59 ≈ 106 different combinations. In order to evaluate scoring, we need to com-
pute the whole BLOSUM similarity score distributions to self-peptides repre-
sented through, e.g., the HLA-Ligandome. Even with the optimized computa-
tional methods, this is time-intensive, and therefore, an optimal optimization
method is not calculatable in feasible time.

An evolutionary algorithm is a metaheuristic optimization algorithm, which
can handle such big search spaces and still obtain good results in a feasible
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time. The base algorithm can be described as following:

1. Create a random starting population of N individuals that are repre-
sented through chromosomes that contain m genes. Each gene represents
a parameter that is coined into a chromosome that fully characterizes the
desired model.

2. Repeat the following steps for several generations until convergence:

• Evaluate fitness of all individuals by a fitness function f .

• Select the fittest individuals. Individuals with higher fitness have a
higher chance to be selected.

• Breed the selected individuals and apply a cross-over-technique to
produce the next generation.

• Mutate the next generation by a given a mutation probability.

3. Select the fittest individual in the last generation.

Restricting weights to integer weights in a given range creates combinations
in a countable search space. For our optimization problem, an individual can
then be represented as a list of position-specific weights or a list of AAIndex
indices that describe different amino acid properties. Each distinct weight or
index, therefore, represents a gen of a chromosome. We can then generate a
starting population by selecting random weights or indices for each chromo-
some [Whi94].

The fitness of an individual can then be determined by minimizing the me-
dian similarity of immunogenic peptides compared to non-immunogenic ones.
However, this will overfit the solutions to our assumptions, as we force the
expected behaviors to be present.

We also created an alternative fitness function using a support vector ma-
chine (SVM) to classify peptides according to their BLOSUM similarity score
or feature mapped distance score, given a list of weights or AAIndices. This ap-
proach will not force the expected lower immunogenic similarity to be present;
it will increase the separability of immunogenic and non-immunogenic pep-
tides. Furthermore, it gives an insight of how much these optimizations can
increase the predictability. An SVM is a machine learning approach for su-
pervised learning. The SVM algorithm separates a set of points into classes
so that around the class boundaries, a range as wide as possible remains free
from points. Starting from a set of training points with labeled classes, each
point is represented by a vector in a vector space. The SVM algorithm now
finds a hyperplane that separates these two classes, according to an error term,
best. The penalty parameter C can determine the tradeoff between minimizing
training error and maximizing the margin. As a hyperplane can not be bend,
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a clear separation is only possible for linearly separable points. Neverthe-
less, we can use the kernel-trick to obtain a non-linear boundary by projecting
data in higher dimensional space in which we hope to obtain a better separabil-
ity [BC00]. In our case, a point can be represented as, e.g., the BLOSUM score
of the k-nearest neighbors. The immunogenic and non-immunogenic datasets
have an unbalanced number of peptides. As non-immunogenic tend to have
more, this would lead to an imbalanced training. As the SVM algorithm try
to minimize the training error, it will most likely classify most peptides as
non-immunogenic as most classifiers seeking an accurate performance over the
full range of training data. Therefore we apply a class weighting in train-
ing, for, e.g., n immunogenic peptides and m non-immunogenic peptides, we
give the immunogenic class a weight of m

n
and the non-immunogenic class a

weight of 1. This simulates equally sized datasets and allows the training of
an SVM with imbalanced data sizes. We use stratified k-fold-cross-validation
to avoid overfitting. Thereby we fold our data into k smaller sets and train the
SVM k times with k− 1 sets, while testing classification only with the test set
excluded from training. This will prevent overfitting and therefore ensure gen-
eralizability. To find the best fitting individual, we can now try to maximize
the cross-validation accuracy. However, for imbalanced data, accuracy is not a
good choice as it is strongly biased by the most abundant class. For example, if
we have three times more non-immunogenic peptides than immunogenic ones,
the accuracy for classifying all peptides as non-immunogenic is 75%, while that
of classifying all peptides as immunogenic is only 25%. Therefore, we choose
the F1-score, which is a function of precision and recall. Precision is defined
as the number of true positives divided by all positive predictions and recall as
the number of true positives divided by the actual number of positives. The
F1-score is then defined as

F1 = 2 · Precision ·Recall

Precision + Recall
.

Maximizing this with the genetic algorithm will seek a balance between Preci-
sion and Recall, and leads to a measurement of accuracy that is not affected by
the large numbers of non-immunogenic peptides [GYD+08, AC10, PVG+11].

We added elitism into the genetic algorithm, which includes a small amount
of the fittest individuals unchanged into the next generation. A tournament
selection method was implemented. For a given tournament size, this number
of individuals is randomly sampled from the population. The winner of the
tournament, the fittest individual, is selected. For the thereby selected parents,
a uniform cross-over technique is applied. The genes for a child are uniformly
chosen from its parents. Mutations of a gen follow a given probability and
replace a gen with a random one.

These basic principles allow us to start with a starting population that
is substantially smaller than the search space but still obtain good results in
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optimization. This reduces computational time enough to allow the analysis of
position-specific weights and chemical properties based on our sequence-based
view of self-tolerance [Whi94].

2.2.4 Further methods in computational analysis

The previously described methods were implemented in Python. They are
published as the Python module “pepdist” on Github. These methods were
used to compute the BLOSUM similarity score and feature mapped distance
score to the self proteome representations and optimize these through the
genetic algorithm. We used the Python module scipy for statistical tests and
for a KDTree implementation [JOP+ ]. For plotting, we used seaborn and
matplotlib [Hun07]. The SVM classifiers and cross-validations were performed
using scikit-learn [PVG+11].
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Chapter 3

Results and Analysis

We first computed the BLOSUM-based similarity between peptides of known
immunogenicity against the nearest neighbor of a reference peptide population
using the k-nearest-neighbor approach for the three different self proteome
representations defined in the previous chapter. To investigate the influence
of residue positions on the BLOSUM score, we applied a genetic algorithm
to obtain position-specific weights. Subsequently, we evaluated the scoring
distribution for feature encoded peptides based on the distance to self. In a
similar fashion, we used a genetic algorithm to obtain residue features that
can be associated with immunogenicity.

3.1 BLOSUM-based similarity to self

We computed the BLOSUM-based similarity score using the methods discussed
in Subsection 2.2.1. The score was calculated for the HLA-Ligandome, pre-
dicted proteome, and predicted thymus proteome. Position-specific weights
were determined that minimize the immunogenic median BLOSUM simi-
larity to the nearest neighboring self-peptide, compared to that of a non-
immunogenic one. Similarly, we determined weights that maximize the cross-
validation F1-score of a simple SVM classifier.

3.1.1 BLOSUM similarity to HLA-Ligandome

We computed the scores with the standard BLOSUM62 matrix [HH92]. As
all peptides have an equal length, the score was calculated globally, and no
weights were applied per position. We calculated the score for all selected
HLA alleles HLA-A*01:01, HLA-A*02:01, HLA-A*03:01, HLA-A*11:01, HLA-
A*24:02, HLA-B*07:02, HLA-B*15:01 and HLA-B*44:02. For all peptides in,
e.g., HLA-A*01:01, the BLOSUM similarity score is calculated as the highest
pairwise similarity to self-peptides in the HLA-Ligandome also presented on

25
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HLA-A*01:01. In other words, the nearest neighbor problem was solved for
all peptides presented on the same HLA allele using the trie based approach
explained in Subsection 2.2.1. We found 2, 38, 0, 1, 0, 1, 2 and 0 exact matches
for immunogenic peptides and 109, 84, 30, 21, 3, 20, 349 and 47 matching non-
immunogenic peptides for their corresponding allele. We plotted the obtained
BLOSUM similarity score to the nearest neighboring self-peptide as an em-
pirical cumulative distribution function, which are shown in Figure 3.1. The
exact matching peptides are excluded. Similarly, cumulative empirical distri-
butions were created for the mean BLOSUM similarity score of the 10 and 100
nearest neighbors. These are shown in Figure 1 and Figure 2. A two-sample
Kolmogorov-Smirnov test was performed to determine if there is a significant
difference in these distributions. The null hypothesis that two independent
samples are drawn from the same continuous distribution is rejected if the
p-value is below 0.05. The corresponding p-values are listed in Table 3.1.

Table 3.1: P-values of a two-sample Kolmogorov-Smirnov test for the obtained
distributions against the HLA-Ligandome using the k-nearest-neighbor mean
BLOSUM similarity score for k ∈ {1, 10, 100}. Values below the significance
threshold are highlighted.

HLA KS-Test (k=1) KS-Test (k=10) KS-Test (k=100)

A*01:01 0.0371 0.0568 0.0603

A*02:01 8.146 · 10−7 1.3512 · 10−9 2.8029 · 10−11

A*03:01 0.0074 0.0004 0.0003

A*11:01 0.0002 2.8178 · 10−7 2.3471 · 10−7

A*24:02 0.0955 0.0198 0.0092

B*07:02 0.2825 0.0248 0.3285

B*15:01 0.1088 0.0088 0.0144

B*44:02 0.4722 0.2803 0.4803

We recognized a trend of decreasing p-values for increasing values of k.
However, in some cases they decreased, especially for k = 100. For HLA-
A*01:01, HLA-A*24:02 and HLA-B*15:01, we detected a trend of immuno-
genic peptides to be less similar to peptides in the HLA-Ligandome than for
non-immunogenic ones. According to a Mann-Whitney rank test, the median
BLOSUM similarity is significantly lower than that of non-immunogenic ones
for HLA-B*15:01 (p-value < 0.004) and HLA-A*24:02 for k=10 (p-value <
0.013). The BLOSUM score distributions were significantly different for most
alleles considering all k ∈ {1, 10, 100}. However, for HLA-A*02:01, HLA-
A*03:01 and HLA-A*11:01, we observed a trend of immunogenic peptides to
be more similar to the HLA-Ligandome than for non-immunogenic ones. We
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saw no significant difference for HLA-B*44:02 and, except for k=10, for HLA-
B*07:02.

Figure 3.1: Empirical cumulative distributions of the BLOSUM similarity
score from the nearest neighbor in the HLA-Ligandome. The titles contain the
corresponding HLA allele and number of included peptides, excluding exact
matches.

Length invariant BLOSUM similarity to HLA-Ligandome

We extracted all peptides from the corresponding datasets, as described in Sec-
tion 2.1. However, we did not restrict only to nonameric peptides this time.
Thereby we obtained peptides with lengths between 8 and 12. As described in
Subsection 2.2.1, we computed the BLOSUM similarity to self as the score of
the highest scoring consecutive substring. The resulting empirical cumulative
score distributions against the length invariant HLA-Ligandome are shown in
Figure 3. These are similar to the distributions considering only nonameric
peptides. However, they differed less, according to a two-sample Kolmogorov-
Smirnov test their distributions were different only for HLA-A*02:01, HLA-
A*03:01, HLA-A*11:01 and HLA-B*15:01 (p-values < 0.01). Immunogenic



28 CHAPTER 3. RESULTS AND ANALYSIS

peptides had according to a Mann Whitney rank test a significantly lower
median BLOSUM score for HLA-B*15:01 (p-values < 0.008). A BLOSUM
score of one now additionally represents an exact matching substring. For
the corresponding alleles we obtained 2, 54, 1, 1, 2, 2, 4, 0 and 0 identical
immunogenic substrings and 198, 122, 47, 31, 3, 32, 571, 109 and 0 identi-
cal non-immunogenic substrings. These numbers are slightly higher than for
nonameric peptides; however, we simultaneously consider more peptides.

Dependency on MHC binding affinity

Immunogenic as well as non-immunogenic peptides are validated or predicted
to bind to an MHC molecule. This fact should neglect differences that are
caused by MHC binding motifs and not by immunogenicity. Nevertheless, as
shown in Figure 2.1, the distributions of binding affinity scores differ slightly,
i.e., immunogenic peptides tend to have a higher affinity. Because we can
expect a higher similarity between peptides that both have high binding affini-
ties as for peptides that differ in affinity, a higher BLOSUM similarity score
to self can be partially explained by the fact that the HLA-Ligandome and
immunogenic peptides have a higher binding affinity.

To investigate this, we equalized the binding affinity distributions in im-
munogenic and non-immunogenic datasets. If different binding affinities cause
the observed differences in score distributions, the differences should vanish
for peptides with equal binding affinity distributions. Therefore, we binned all
immunogenic peptides in ten quantification bins according to their predicted
binding affinity score. We receive a histogram which approximates the im-
munogenic binding affinity distribution. For these quantification bins, we ran-
domly subsample without replacements from the non-immunogenic peptides
the same frequencies as for the immunogenic set. According to a two-sample
Kolmogorov-Smirnov test, both sets are then drawn from the same distribution
(p-values > 0.8). The random subsampling was repeated 100 times, and for
the obtained sets the BLOSUM similarity to the HLA-Ligandome is computed
as previously discussed. The obtained distributions are shown in Figure 4. We
detected some variance, but on average, they were similar to the distributions
for the whole data sets.

3.1.2 BLOSUM similarity to the predicted proteome
and thymus proteome

Similarly to the HLA-Ligandome, the BLOSUM-based similarity scores against
the predicted human proteome and thymus proteome were computed using the
same k-nearest-neighbor approach with k ∈ {1, 10} for all HLA alleles. The
obtained empirical cumulative BLOSUM score distributions are shown in Fig-
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ure 3.2 and Figure 3.3. Keep in mind that equal matches are excluded from
these distributions, for example in HLA-B*15:01 of the predicted proteome we
found 461 non-immunogenic peptides in the self proteome, which causes a re-
markably different distribution compared to the HLA-Ligandome or predicted
thymus proteome. The number of equal matches are listed in Table 3.2. We ob-
served a higher number of equally matching peptides in the predicted proteome
as in the HLA-Ligandome or thymus proteome. This behavior is expected as
it contains substantially more self-peptides. Yet, the thymus proteome also
contains more peptides than the HLA-Ligandom but shows a smaller num-
ber of identically matching peptides. A two-sample Kolmogorov-Smirnov test
was again used to evaluate the significance of the differences between both
distributions. The obtained p-values are shown in Table 3.3. Generally, the
p-values were consistently higher in the predicted proteome compared to the
HLA-Ligandome or thymus proteome, except for HLA-A*01:01.

Table 3.2: The number of exactly matching peptides for immunogenic and
non-immunogenic peptides in the predicted proteome and thymus proteome.

Proteome Thymus
HLA immunogenic non-immunogenic immunogenic non-immunogenic

A*01:01 6 127 1 9
A*02:01 271 175 11 11
A*03:01 14 68 0 0
A*11:01 8 28 0 0
A*24:02 37 14 0 2
B*07:02 8 53 0 2
B*15:01 3 461 0 4
B*44:02 2 61 0 1

Table 3.3: P-values of a two-sample Kolmogorov-Smirnov test for the obtained
similarity distributions using the k-nearest-neighbor BLOSUM similarity for all
allele types with k ∈ {1, 10} against the predicted proteome and thymus set.
Significantly different distributions are highlighted.

Proteome Thymus
HLA KS-Test(k=1) KS-Test(k=10) KS-Test(k=1) KS-Test(k=10)

A*01:01 0.036 0.022 0.054 0.019
A*02:01 0.582 0.315 0.054 0.019
A*03:01 0.950 0.482 0.031 0.190
A*11:01 0.754 0.414 0.164 0.063
A*24:02 0.065 0.028 0.039 0.002
B*07:02 0.489 0.156 0.264 0.156
B*15:01 0.338 0.277 0.003 2.3 · 10−5

B*44:02 0.459 0.895 0.909 0.905
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Figure 3.2: Empirical cumulative distributions of BLOSUM similarity score
for the nearest neighbors in the predicted proteome is plotted. The corre-
sponding allele and numbers of all relevant peptides, excluding equal peptides,
is annotated above each plot.

Comparing this to the results obtained for the HLA-Ligandome as self-
representation, we observe similar behaviors. However, the distributions differ
less for the predicted proteome. Especially the thymus set shows similar BLO-
SUM similarity score distributions compared to the HLA-Ligandome, even
though the overlap between both sets is only 3%. Similar trends for decreas-
ing p-values by increasing k in the k-nearest neighbor search were observed.
Thymus had mostly lower p-values than proteome and in some cases even lower
than for the HLA-Ligandome. A significantly lower median BLOSUM similar-
ity to self was achieved for HLA-A*01:01 and HLA-A*24:02 for thymus and the
predicted human proteome (p-values < 0.03); furthermore, by HLA-B*15:01
for the thymus proteome.
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Figure 3.3: Empirical cumulative distributions of the BLOSUM similarity
score for the nearest neighbor in the predicted thymus proteome. The
corresponding allele and numbers of included peptides, excluding equal peptides,
is annotated above each plot.

3.1.3 Position specific weights

As described in Subsection 1.1.3, the TCR interaction with the peptides
are not uniformly distributed [CdBK12, RW02]. Therefore we tried to find
position-specific weights that optimize the BLOSUM similarity score distribu-
tions against the HLA-Ligandome. As we expect immunogenic peptides to be
less similar to self compared to non-immunogenic peptides, we first tried to
achieve a lower median similarity for immunogenic than for non-immunogenic
peptides. To solve this optimization problem, we applied a genetic algo-
rithm [BPS+16, FdBL+08, Whi94].

We used five different weights w ∈ {1, 2, 3, 4, 5}. The algorithm was started
with a population of 50 distinct individuals. Tournament selection was applied
with a tournament size of three. Elitism was set to keep the five best indi-
viduals, and the mutation rate was set to five percent. Two different fitness
functions were applied. First, we minimized the p-value of a Mann-Whitney
rank test, testing for a lower median similarity score of immunogenic peptides.
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Exactly matching peptides were excluded for fitness evaluation, as for the dis-
tributions. The algorithm converged after approximately 10 to 15 generations.
We repeated the runs two times for different starting generations and accepted
the best individual if all runs got similar or the same weights, otherwise, we
reran the algorithm one more time and selected the best.

The weights to minimize the similarity to self for immunogenic peptides
are listed in Table 3.4, from now on referred to as MIN weights. The genetic
algorithm succeeded to find position-specific weights that cause distributions
with a significantly lower median BLOSUM similarity to self of immunogenic
peptides for most alleles, except for HLA-A*02:01, HLA-A*03:01 and HLA-
A*11:01. These weights reveal that immunogenic peptides are significantly less
similar to self-peptides mostly at positions 4, 5, and 8 for HLA-A and positions
1,2,4,7 and 8 for HLA-B. However, these weights represent weights that fit the
underling data best for the corresponding fitness function. Therefore, this does
not necessarily imply that these weights fit for all MHC binding peptides of the
same allele. To assess if the obtained weights are generalizable, we performed a
stratified 2-fold-cross-validation. Immunogenic and non-immunogenic datasets
were randomly shuffled and split in two. We optimized weights similarly with
the genetic algorithm on one half and determined the median BLOSUM sim-
ilarity score to the HLA-Ligandome on the other. We made this for both
sets, and the obtained averaged medians are listed in Table 1. As we op-
timized weights by minimizing the median BLOSUM score of immunogenic
peptides, this behavior should be observed in the cross-validation results if
the obtained weights are generalizable. A lower median BLOSUM score for
immunogenic peptides was observed for HLA-A*01:01, HLA-A*24:02, HLA-
B*07:02 and HLA-B*15:01. On the other hand, HLA-A*02:01, HLA-A*03:01,
HLA-A*11:01 and HLA-B*44:02 showed in the testing sets opposite behav-
iors and therefore showed less generalizability. For HLA-B*44:02, this is most
likely caused by the small number of immunogenic peptides [AC10].

To determine fitness unbiased from our main assumption and to evalu-
ate the predictability, we optimized the F1-score of a simple SVM classifier
through the same algorithm. All peptides were thereby represented as two-
dimensional points that represent the BLOSUM similarity score for the first
and second nearest neighbor. The SVM was set to use a radial basis func-
tion kernel, and the penalty parameter C = 1. We maximized during the
genetic algorithm the mean F1-score of a 5-fold-cross-validation as described
in Subsection 2.2.3 [BC00, AC10, PVG+11]. The obtained weights are listed
in Table 3.5, from now on referred to as SVM weights. The highest weights
obtained P1, P3, P5, and P8 for HLA-A and P1, P3, P5, and P7 for HLA-B.
The obtained classification boundary, together with the 5-fold-cross-validation
F1-scores, are shown in Figure 3.5. Only for HLA-A*01:01 and HLA-B*15:01
the classifier clearly associated immunogenic peptides with a lower similarity
to self-peptides.
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Table 3.4: Position-specific weights obtained by minimizing the median simi-
larity of immunogenic peptides compared to non-immunogenic ones. The min-
imized p-values for Mann-Whitney rank test (MU) and additionally for two-
sample Kolmogorov-Smirnov test (KS) are attached. The last rows represent
the mean weights per position for HLA-A and HLA-B.

HLA P1 P2 P3 P4 P5 P6 P7 P8 P9 KS MU

A*01:01 3 1 1 5 3 2 1 1 5 10−5 10−5

A*02:01 5 1 4 1 1 1 5 5 1 0.9 0.25
A*03:01 1 1 1 4 5 2 1 3 5 0.86 0.33
A*11:01 1 1 2 5 1 3 5 5 1 0.6 0.47
A*24:02 1 1 5 3 5 3 1 4 1 10−4 10−4

B*07:02 4 5 2 4 1 1 5 1 1 0.08 10−3

B*15:01 4 2 5 1 2 2 1 5 1 10−7 10−7

B*44:02 1 5 1 4 1 5 3 5 1 0.01 0.01

HLA-A 2.2 1 2.6 3.6 3 2.2 2.6 3.6 2.6
HLA-B 3 4 2.6 3 1.3 2.6 3 3.6 1

Figure 3.4: The empirical cumulative distributions of the BLOSUM similarity
score, weighted by positional weights described in Table 3.4, against the HLA-
Ligandome. The corresponding HLA allele and size of the datasets, excluding
equal peptides, is annotated above each plot.
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Table 3.5: Position specific weights obtained by maximizing cross-validation
F1-score of a SVM classifier. The last rows represent the mean weights per
position for HLA-A and HLA-B subtypes.

HLA P1 P2 P3 P4 P5 P6 P7 P8 P9

A*01:01 2 1 1 1 5 4 1 1 5
A*02:01 5 1 2 1 3 1 5 4 4
A*03:01 5 3 5 3 2 3 2 3 1
A*11:01 4 4 2 1 3 4 1 3 1
A*24:02 3 2 5 4 5 2 1 5 2
B*07:02 5 1 3 2 5 5 1 5 5
B*15:01 4 2 4 3 1 1 4 1 1
B*44:02 4 2 4 2 3 2 5 2 3

HLA-A 3.8 2.2 3 2 3.6 2.8 2 3.2 2.6
HLA-B 4.3 1.6 3.6 2.3 3 2.6 3.3 2.6 3

Figure 3.5: A scatter plot showing the BLOSUM similarity score of the first
and second nearest neighboring self-peptide in the HLA-Ligandome, weighted
as shown in Table 3.5. The SVM decision boundary is shown as a black line.
Above each plot, the corresponding HLA allele, the mean 5-fold-cross-validation
F1-score, and the relevant peptides, excluding equal matches, is annotated.
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Additionally, we trained SVMs with the same settings for the BLOSUM
similarity score to the HLA-Ligandome using a uniform weighting, the MIN
weights, and the SVM weights. The corresponding F1-scores are listed in
Table 3. For comparison, we also included the F1-scores of a dummy classifier
that randomly classifies peptides with respect to the number of data points
included. We classified the data 100 times with this classifier and annotated
the mean F1-score. The SVM weights obtained, on average a 22% higher
F1-score than the dummy classifier and an 8% higher F1-score than the MIN
weights. The MIN weights increased the F1-scores if the genetic algorithm
could find weights that result in a significantly lower median BLOSUM scores.

3.2 Feature map encoded distance to self

In the previous section, we measured the similarity using a score derived from
a BLOSUM62 matrix. Thereby we consider the overall physicochemical prop-
erties of amino acids [HH92]; however, some chemical properties enhance im-
munogenicity more than others [CMG+13]. Therefore it may be beneficial
to consider only a subset of properties. We encoded peptides as described in
Subsection 2.2.2. First, we revied feature maps associated with immunogenic-
ity in previous studies and then mined for physicochemical properties in the
AAIndex database ourselves. After encoding the peptides with feature maps,
the distance to self was determined by solving the nearest neighbor problem
using the euclidean distance for peptides with known immunogenicity to self-
peptides contained in the HLA-Ligandome.

3.2.1 AAIndex encoded distance to self

In previous studies, there was no single amino acid property described in the
AAIndex database associated with immunogenicity. Nevertheless, a combina-
tion may be feasible [CMG+13]. Such a combination was searched to create
the immunogenicity predictor POPI. They could associate 23 indices from the
AAIndex with immunogenicity [TH07]. We therefore first described all pep-
tides with these 23 indices and then computed the k-nearest neighbors for
k ∈ {1, 10, 100} as described in Subsection 2.2.2. The obtained distributions
of the feature encoded distance score to peptides in the HLA-Ligandome are
shown in Figure 3.6. Keep in mind that now a distance metric rather than a
similarity is shown. Therefore we would expect for immunogenic peptides a
higher distance to self-peptides than for non-immunogenic ones. Comparing
to the BLOSUM similarity approach, we would expect an inverted behavior of
the similarity/distance to self distributions. Exactly this behavior is observed
in the plots.
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To evaluate the difference in these distributions, a two-sample Kolmogorov-
Smirnov test was used, and the resulting p-values are shown in Table 3.6. While
these showed similar behaviors as for the BLOSUM similarity score, consis-
tently higher p-values were obtained. In most cases, except HLA-A*01:01,
HLA-B*07:02 and B*44:02, we observed a significant difference in these distri-
butions. According to a Mann Whitney rank test only HLA-B*15:01 showed
a significant trend for immunogenic peptides to be more distant to self than
for non-immunogenic peptides (p-value < 0.0004).

Figure 3.6: Empirical cumulative distributions of the euclidean distance from
the nearest neighbor in the HLA-Ligandome. Peptide are described with the
23 AAIndices associated with immunogenicity [TH07]. The corresponding allele
and number of included peptides, excluding equal peptides, is annotated above
each plot.
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Table 3.6: P-values of a two-sample Kolmogorov-Smirnov test for the obtained
distributions using the k-nearest-neighbor mean feature map encoded distance
score for all HLA alleles with k ∈ {1, 10, 100}. Significantly different distribu-
tions are highlighted.

HLA KS-Test (k=1) KS-Test (k=10) KS-Test (k=100)

A*01:01 0.3566 0.3678 0.5946
A*02:01 0.0002 2.62 · 10−5 2.34 · 10−5

A*03:01 0.0099 0.0007 0.0008
A*11:01 0.0003 0.0002 0.0007
A*24:02 0.4626 0.0359 0.0146
B*07:02 0.6906 0.9955 0.2097
B*15:01 0.0005 0.0004 0.0103
B*44:02 0.9467 0.6739 0.5096

3.2.2 Physicochemical properties relevant to self-
tolerance/immunogenicity

As the indices obtained in the creation of POPI [TH07] showed low differentia-
bility, we tried to identify a small set of indices from the AAindex relevant for
immunogenicity. We solved this problem similar to the positional weighting
approach with a genetic algorithm. First, all AAIndex entries were z normal-
ized and all indices that contain NA values are excluded. This lead to 553
feature mappings. We performed a redundancy reduction and only considered
AAIndex entries that have a Pearson’s correlation coefficient below 0.9 to each
other. This lead to 331 feature mappings that were considered by the genetic
algorithm.

We defined a chromosome as a set of five amino acid indices. We are starting
from a population of 1000 distinct random individuals. First, we evaluated
the fitness to minimize the immunogenic distance to self. This was done by
minimizing the p-values of a Mann-Whitney rank test. The tournament size
was set to three, elitism to ten and the mutation rate to one percent. The
identified combinations are listed in Table 3.7, from now on referred to as MAX
indices. The corresponding feature encoded distance score distributions to the
HLA-Ligandome are shown in Figure 3.7. All combinations were able to obtain
highly significant p-values for their corresponding test. All HLA alleles share no
single feature map; however, there are feature maps that are shared by multiple
HLA alleles, e.g., KUMS000103. In some cases, the algorithm obtained the
best results by reusing a single AAIndex twice. To test their generalizability,
we again made a 2-fold-cross-validation, similarly to the position weighted
approach. For immunogenic peptides, this showed a higher median distance
for all HLA alleles except HLA-A*02:01 and HLA-B*44:02. Therefore, the
obtained indices should be generalizable [AC10]. The corresponding medians
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are listed in Table 2.

On a comparable basis, we again extracted a combination of five AAIndices
that achieved best 5-fold-cross-validation F1-scores. All peptides were thereby
represented as two-dimensional points that represent the Euclidean distance
of the first and 10th nearest neighboring self-peptide in the HLA-Ligandome.
The SVM was set to use a radial basis function kernel and the default penalty
parameter C = 1 [BC00, AC10, PVG+11]. This lead to the indices listed in
Table 3.8, from now on referred to as SVM indices. The corresponding decision
boundaries of the trained SVMs are shown in Figure 3.8. Comparing the
position weighted approach, we obtained higher F1-scores and more complex
decision boundaries. Immunogenic peptides were associated with a higher
distance to self-peptides for HLA-A*24:02 and HLA-B*15:01.

Table 3.7: Obtained feature maps from the AAIndex, obtained by minimizing
the median similarity of immunogenic peptides compared to non-immunogenic
ones.

HLA AAIndex ID’s

A*01:01 KUMS000103 RACS820113 RACS820113 RICJ880101 RICJ880107

A*02:01 CHOP780204 FAUJ880104 FAUJ880111 FUKS010101 WOLS870103

A*03:01 EISD860102 FAUJ880107 KARS160112 KARS160119 KARS160119

A*11:01 AURR980101 AURR980120 KARS160110 KARS160122 KUMS000103

A*24:02 KUMS000103 OOBM770104 QIAN880105 QIAN880123 QIAN880123

B*07:02 BUNA790103 FASG760105 KARS160119 QIAN880123 QIAN880123

B*15:01 BEGF750103 GEOR030107 NAKH900104 PALJ810114 RICJ880117

B*44:02 BROC820101 JOND920102 LIFS790102 NOZY710101 SUEM840102

Table 3.8: Feature maps obtained from the AAIndex by maximizing cross-
validation F1-score of a SVM classifier.

HLA AAIndex ID’s

A*01:01 FAUJ880111 KLEP840101 LEVM780102 QIAN880138 ROBB790101

A*02:01 BULH740102 OOBM850103 SWER830101 TANS770108 VASM830103

A*03:01 ANDN920101 FINA910101 LAWE840101 RICJ880117 SNEP660103

A*11:01 FINA910101 MEEJ810101 PONP800105 SNEP660103 VINM940102

A*24:02 CIDH920101 GEOR030108 KUMS000103 QIAN880123 ROBB760111

B*07:02 CHAM820102 OOBM850103 OOBM850105 WILM950104 WILM950104

B*15:01 BROC820101 GEIM800102 GEIM800102 QIAN880116 WIMW960101

B*44:02 FUKS010111 GEOR030108 ISOY800102 RICJ880106 SUEM840101
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Additionally, we trained SVMs with all peptides encoded by the MAX
indices and SVM indices. The F1-scores for both cases are listed in Table 4.
The SVM optimized indices performed 8% better than the MAX indices. The
same improvement was observed for the SVM weights in the position-specific
optimization approach. It performed 30% better than the dummy classifier.

Figure 3.7: Empirical cumulative distributions of the according to Table 3.7
encoded peptides nearest neighboring distance to a self-peptide in the HLA-
Ligandome. The corresponding allele and numbers of relevant peptides, exclud-
ing equal peptides, is annotated above each plot.
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Figure 3.8: A scatter plot showing the Euclidean distances, for peptides en-
coded by AAIndices shown in Table 3.8, of the first and 10th nearest neighboring
self-peptide in the HLA-Ligandome. The corresponding decision boundary of
the SVM is shown as black line. Above each plot, the corresponding HLA allele,
the mean 5-fold-cross-validation F1-score and the included number of peptides,
excluding equal matches, is annotated.

3.3 Methods Benchmark

We benchmarked our methods empirically. All processing was done on a
personal computer with the CPU AMD Ryzen 5 1600 (6-core, 12-threads).
All methods were implemented to support multiprocessing; however, for this
benchmark, we only used one thread.

We compared the trie based method, a naive approach, and the LSH as
implemented in “pepdist”. Additionally, a KDTree implementation from the
Python module scipy was used [JOP+ ]. We randomized the search space to
contain 104, 105, and 106 peptides. All methods were performed on 100 random
query peptides. For LSH and KDTree, these were encoded by five random
AAIndex indices: SUEM840101, GEOR030104, RADA880102, CHAM810101,
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and LEVM780106. For LSH the parameters were set to L = 3, k = 5 and w =
5. The obtained computation times are listed in Table 3.9. We can observe that
as expected the naive implementation increase in O(n). The trie-based branch
and bound algorithm is theoretically also in O(n); however, the computation
times show that bounding can decrease this strongly, especially for a big search
space, as then it is likely to find a good bound. The KDTree showed a better
performance and the LSH an even better. The increase of computation time
for LSH is caused by the static parameterization and therefore leading to a
increase in the bin sizes. A variable parameterization can keep computation
times constant.

To demonstrate the flexibility of LSH through parameterization, we mea-
sured time and mean squared error for different L and k. The bin width w was
set to five. This computation was done for 100 random query peptides and
10,000 random search peptides. They were encoded with the same AAIndices
as previously. The performance is visualized in Figure 3.9. Thereby mean
squared errors close to zero (< 10−31) can be observed. The mean squared
error and time are in a negative exponential relationship with the parameter
L. Therefore the parameter should not be chosen arbitrary high or small. For
k a strong increase of the mean squared error without major time improvement
is detected after k = 5, suggesting it as optimal value for the corresponding
data.

Table 3.9: Computation times of several nearest neighbor algorithm. A naive
linear algorithm, the implemented branch and bound algorithm (Trie), a k-d-
tree algorithm and the implemented locality sensitive hashing (LSH).

Naive Trie KDTree LSH
Sample size Time Error

N = 104 0.09 s 0.04 s 0.014 s 0.0003 s 0.04
N = 105 0.9 s 0.2 s 0.034 s 0.0008 s 0.01
N = 106 8.9 s 0.5 s 0.1 s 0.008 s 0.004

a b
L=1

L=15

k=10

k=1

Figure 3.9: Mean query time and mean squared error for 100 random query
peptides for different LSH paremeterization. First for different L (a), then for
different k (b).
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Chapter 4

Discussion and Outlook

The potency of peptide-based vaccination depends on peptide immunogenic-
ity. An accurate prediction of peptide immunogenicity can therefore drasti-
cally reduce experimental efforts in vaccine design. Due to the complexity
of the immune system, assessing the immunogenicity is a hard task. There-
fore, self-tolerance is especially interesting as it models in vivo systemic ef-
fects as well as TCR interaction indirectly. The TCR has to differentiate
self from non-self to maintain self-tolerance. A peptide that is recognized as
non-self and induces an immune response must, therefore, differ from self-
peptides. [BPS+16, FdBL+08]. This thesis investigates if this can be observed
in a sequence-based model of self-tolerance and if it can be used to predict
immunogenicity.

In this thesis, we evaluated the sequence-based model of self-tolerance us-
ing a BLOSUM62-based similarity score [HH92]. We compute the similar-
ity to self as the highest pairwise similarity between a query peptide with
known immunogenicity and a population of self-peptides in a reference set
as defined in Chapter 2. First, we used an experimentally validated set of
self-peptides, the HLA-Ligandome as reference. For the investigated HLA
alleles the immunogenic peptides were only marginally present in the HLA-
Ligandome. These peptides can be classified as false-positives, caused, for
example by the soft immunogenicity classification, as peptides with contradic-
tory T cell assay results were classified as immunogenic if there was at least one
positive assay [OY18]. A much higher number of equal matching peptides was
detected for non-immunogenic peptides. However, for most HLA alleles except
HLA-B*15:01, there are more non-equal peptides, which is consistent with the
fact that only a small overlap of nonameric peptides between the human and
bacterial/viral proteomes exist [CdBK12]. As peptides from human origin
were not excluded; these may cause the larger overlaps. However, peptides
with human origin are only marginally present in the non-immunogenic set,
which origin predominantly from the Vaccinia virus. We come to the apparent
conclusion that peptides equal to a self-peptide, which are genuinely presented
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on an MHC molecule, can always be classified as non-immunogenic. We de-
cided, therefore, to exclude such peptides from the analysis. For non-equal
peptides, we could show that for most HLA alleles, there is a significant differ-
ence in the BLOSUM similarity score distribution between immunogenic and
non-immunogenic peptides. We detected a trend for a more significant differ-
ence when the BLOSUM similarity score is evaluated for k-nearest-neighbors
instead of a single one. However, in some cases, particularly for k = 100,
it increases the p-value, which indicates that there is an allele-specific opti-
mal value for k. Nevertheless, this revealed unexpected results. As described
in Chapter 1, we expect a lower similarity to self-peptides for immunogenic
peptides; however, we only detected a significantly lower median BLOSUM
similarity score of immunogenic peptides for HLA-B*15:01 and HLA-A*24:02.
For HLA-A*01:01, an insignificant trend to be less similar to self was observed,
and for the other alleles, there is a trend to be more or equally similar to self-
peptides.

We also determined the BLOSUM similarity to the HLA-Ligandome for
length invariant peptides, by computing the BLOSUM similarity score for the
longest highest-scoring consecutive substring as defined in Subsection 2.2.1.
While this method may not be optimal for the comparison, as the primary
mechanism of extending size is central bulging [SPHB00], we detected in-
teresting trends. Computing similarities between length invariant peptides
with these methods will score an exactly matching subsequence with a BLO-
SUM score of one. The slight increase in the frequency of peptides scored
with one can be explained by the overall increase in included peptides and
therefore by more equal matching peptides rather than by equally matching
subsequences. As the main mechanism of extending size is central bulging
with anchor residues at position two and the C terminal end, we would ex-
pect such a behavior, because comparing subsequences will displace anchor
position. If protrusion would be the main mechanism of extending size, we
should observe more matching subsequences [SPHB00]. The BLOSUM simi-
larity score distributions to self-peptides in the HLA-Ligandome are similar to
them with restriction to nonameric peptides. In the sight of self-tolerance a
restriction to nonameric peptides is only problematic if a nonameric peptide is
most similar to a self-peptide with a different length, as then, its nearest neigh-
bor is excluded by this restriction. If this is the case, we should observe score
distributions that differ; however, there are only slight differences that can be
explained with the unmodeled central bulging. Longer peptides bulge out more
than smaller ones, which creates different pMHC interfaces for the TCR and
questions comparability of such peptides. Additionally, the TCR interacting
residues change, making a comparison even harder [RW02, GTW99, SPHB00].
For the sake of simplicity, we continued the analysis with restriction to non-
americ peptides.

In order to investigate the observed behavior, we reviewed several possible
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explanations. Firstly we validated the influence of MHC binding properties.
All peptides are predicted or experimentally shown to bind to their labeled
MHC molecule. This should neglect all differences that are caused by MHC
binding motifs, as all compared peptides share the same motifs. However, the
immunogenic set showed a higher predicted binding affinity score than non-
immunogenic peptides. This trend is consistent with the fact that immuno-
genicity correlates with binding affinity and stability [HRR+12, SVR+94].
Nevertheless, this could partially explain higher similarities to the HLA-
Ligandome, as the contained peptides have a high binding affinity as well. We
examined this by equalizing predicted binding affinity score distributions be-
tween immunogenic and non-immunogenic peptides and detected only a small
influence on the BLOSUM-based similarity score to self-peptides in the HLA-
Ligandome. Therefore, we conclude that differences in MHC binding affinity
do not cause a big difference in the BLOSUM similarity to self distributions.

The unexpectedly higher similarity of immunogenic peptides can possibly
be explained by the fact that the HLA-Ligandome does not represent the com-
plete immunologically relevant self proteome. It contains only several thousand
peptides; thereby, the true most similar self-peptide can be missing. Addition-
ally, the HLA-Ligandome contains no peptides that were extracted in thymic
samples and therefore, only models peripheral tolerance explicitly. Hence we
investigated alternative representations of the immunological relevant human
proteome, the predicted proteome, and the predicted thymus proteome as de-
fined in Section 2.2.2. The predicted proteome represents the whole human
proteome that is potentially visible to a TCR and therefore models all pep-
tides that can induce mechanisms of central or peripheral tolerance. In con-
trast to this, the thymus set contains peptides from proteins that are at least
marginally expressed in the thymus and therefore explicitly models central tol-
erance. However, both sets do not account proteasomal processing and TAP
transport, account for this through suitable predictors may result in better
representations. All mechanisms involved in MHC presentation are modeled
in the HLA-Ligandome, as these peptides were observed to be presented by
living cells. Further, the predicted proteome does not account for proteins
that are only marginally expressed or only expressed in immunologically privi-
leged regions and, therefore, are not accessible for the immune system and not
involved in self-tolerance [MWSS18].

We computed the BLOSUM similarity score for all three self-
representations. More exactly matching immunogenic and non-immunogenic
peptides are present in the proteome. Especially for HLA-A*02:01, more im-
munogenic than non-immunogenic peptides are contained. This is probably
caused by false-positive MHC binders, as the creation method ignores pro-
cessing, transport as well as precursor protein abundance and accessibility.
Thereby the set is expected to contain many self-peptides that can bind to
MHC but usually are not presented by a cell in vivo and are not accessible
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for the immune system. On the other hand, we observed nearly no investi-
gated peptides that are equal to a self-peptide in the predicted thymus set.
This is interesting as several matching peptides were observed to be present in
the HLA-Ligandome or predicted proteome, which indicates that the matching
self-peptides are only expressed in the peripheral tissues. For non-immunogenic
peptides, this suggests that the non-immunogenic nature of these peptides is
not induced by central tolerance through equal matching self-antigens in the
thymus, rather that it is subject to either peripheral tolerance or that toler-
ance is induced through degenerated T cell recognition [FdBL+08, CdBK12].
All three BLOSUM score distributions are similar. The predicted proteome
performed worst, for most HLA alleles the BLOSUM similarity score distribu-
tion did not differ significantly. The thymus dataset, as well as the predicted
proteome, do not model peptide processing; however, the HLA-Ligandome
does. Further, the expression in relevant tissues is only considered by the thy-
mus proteome and HLA-Ligandome. This implies that less different BLOSUM
scores between immunogenic and non-immunogenic peptides in the predicted
proteome are prematurely caused by not considering the peptide abundance
in immunological relevant tissues, rather than not considering MHC ligand
processing. This suggests that a big chunk of MHC presentable peptides in
the human proteome is less relevant for self-tolerance, as they are presented
in immunologically privileged tissues. We concluded from the similar dis-
tributions that HLA-Ligandome is representative for the self proteome. For
HLA-A*01:01 the predicted (thymus) proteome showed a significantly lower
median BLOSUM similarity to self, which was only insignificant for the HLA-
Ligandome. This may be caused by the fact that it is underrepresented in the
HLA-Ligandome and contained the fewest amount of self-peptides. Especially
the similar behavior of ligandome and predicted thymus proteome is inter-
esting, as the sets overlap only with 3% but still result in similar BLOSUM
similarity to self distributions. This indicates that while the expressed thy-
mus proteins can differ from those in peripheral tissues, the MHC presented
peptides share common properties to distinguish self from non-self. It is well
known that thymus epithelial cells can express peripheral as well as tissue-
specific antigens [DSKK01]. The small overlap between thymus proteome and
HLA-Ligandome does reflect this behavior only partially and suggests a more
indirect induction of self-tolerance by presenting peptides with similar prop-
erties. This is especially present for HLA-B*15:01, as there is a big chunk
of non-immunogenic peptides present in the HLA-Ligandome or predicted hu-
man proteome; however, not in the predicted thymus. This suggests that
corresponding equally matching peptides are only presented in peripheral tis-
sues and not in the thymus. Nevertheless, these show a significantly higher
similarity to self, compared to that of immunogenic ones and implies that self-
tolerance is induced thought degenerated T cell recognition of peptides with
a high similarity to each other [FdBL+08]. The obtained results are also con-
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sistent with the results of a self-tolerance predictor, which obtained the best
performance on a similar thymus set, but no performance increase on similarly
predicted ligands of the human proteome [TFZ+11]. Comparing the obtained
BLOSUM similarity score distributions to that of MHC class II epitopes for
a similar scoring function obtained by Berescani et al. [BPS+16], we do not
observe a straight lower similarity for immunogenic peptides. This can be
caused by the fact that TCR interactions are less uniformly distributed and
the peptide conformation is less conserved for MHC class I peptides than for
MHC class II ones [GTW99, RW02].

The BLOSUM-based similarity score itself can bias the unexpected trend
for higher similarities to self of immunogenic peptides. Applying this score
finds globally similar peptides, but the TCR interaction is dominated only by
some residues in the central region between position 4 and 8 [RW02, CdBK12].
As the presentability of the peptide is predicted or experimentally validated for
immunogenic and non-immunogenic peptides, the BLOSUM-based similarity
score should account less for positions that are associated with MHC binding,
instead of more for positions that are associated with TCR interaction. We
tried to include this in the BLOSUM-based score by including position-specific
weights. We chose to weight each position with a number between one and
five. Excluding entire positions can lead to a higher overlap of immunogenic
and self-peptides, which is not desirable. Further, all peptide positions can
influence immunogenicity even if they have less TCR contact but determine
conformational similarities or factors that influence immunogenicity like MHC
binding and stability [SVR+94, HRR+12, TEP+05]. A range from one to five
for the weights allows high weights for positions that have a presumably strong
influence on immunogenicity, but also consider global similarity. Allowing a
bigger range of weights may represent position specificity better. However, we
identify these weights with a genetic algorithm; thereby, the increased range
would strongly increase the search space size, leading to more computational
demand for optimization. For all alleles, we computed the position-specific
weights that minimize the median immunogenic BLOSUM similarity to self,
comparing to the non-immunogenic similarity. The obtained position-specific
weights (MIN weights) could influence BLOSUM-based similarity in an ex-
pected way and also reveal positional trends of the data. We obtained mostly
different weighting for the alleles, which suggests different position specificity
for different MHC alleles. This is consistent with the fact that peptide MHC
conforamtion can vary even for MHC subtypes that only differ in one amino
acid [TEP+05]. Nevertheless, we observed averaged trends for HLA-A and
HLA-B. For HLA-A the residue positions P4, P5, and P8 obtained on average
the highest weights, which is consistent with the fact that central positions
P4-P8 have most TCR interaction [CdBK12, RW02]. The P2 residue yielded
the smallest weight, presumably because it is an anchor residue and shared be-
tween MHC binding peptides. Nevertheless, P9 received a higher weight and
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is an anchor residue, too. The P1 position received an intermediate weight
which is consistent with the fact that the P1 residue is often not associated
with immunogenicity or TCR contact [CMG+13, CdBK12]. For HLA-B, we
observed different trends, and P1, P2, P4, P7, and P8 obtained high weights.
The high weightings of P4, P7, and P8 are consistent with HLA-A and TCR
contact profiles [CdBK12]. However, interestingly the P5 residue is weighted
much lower than in HLA-A, which suggests that it is less critical for HLA-B.
The high weight of P2 for HLA-B suggest a strong influence of MHC asso-
ciated properties to immunogenicity or at least a trend in the corresponding
data. We tested if thereby obtained position-specific weights are generalizable
with a stratified 2-fold-cross validation. The results indicate that weights for
HLA-A*01:01, HLA-A*24:02, HLA-B*07:02, HLA-B*15:01 are generalizable.
More folds for the validation would be more meaningful [AC10]; however, this
was computational too expensive.

Unbiased from the assumption that BLOSUM similarity to self should be
smaller for epitopes, we determined position-specific weights that maximized
the 5-fold-cross-validation F1-score in a simple SVM classifier as described in
Subsection 2.2.3. A query peptide is represented as a two-dimensional point,
represented thought the position weighted BLOSUM similarity score of the
first and second nearest neighbor in the HLA-Ligandome. This approach will
not force the immunogenic peptides to have a lower similarity than the non-
immunogenic ones; it will increase the discriminability of immunogenic and
non-immunogenic peptides. Therefore the obtained position-specific weights
should reveal positions that differ most in the BLOSUM similarity to the two
nearest neighboring self-peptides between immunogenic and non-immunogenic
peptides. We obtained partially different weights (SVM weights) compared to
the MIN weights. For HLA-A the residue positions P1, P3, P5, and P7 ob-
tained on average the highest weighting, for HLA-B the positions P1, P3, P5,
P7, and P9. The obtained decision boundaries of the SVM classified peptides
with low BLOSUM similarity score to self as immunogenic for HLA-A*01:01
and HLA-B*15:01. However, the F1-scores were increased on average by 10%
using the SVM weights compared to a uniform weighting and increased on av-
erage by 2% using MIN weights. This at least proofs that the usage of position-
specific weights can increase predictive performance. The MIN weights mostly
increased F1-scores only if the algorithm was able to achieve a significantly
lower median BLOSUM similarity to self. On average, the obtained classifiers
using SVM weights for BLOSUM similarity score computation reached for the
corresponding data an F1-score of 41%. A dummy classifier, which randomly
classifies peptides with respect to the sample sizes obtained only an F1-score
of 19%.

All in all, these results suggest that positional weights can model posi-
tional dependencies in an expected way and can increase the predictability.
However, TCR recognition is highly complex. Determine the similarity of pep-
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tides with position-specific weights suggest that both peptides interact with
similar positions to the TCR. The TCR-pMHC crystal structures show for
a limited amount of peptides that contacts are position-dependent on aver-
age [CdBK12, RW02]. However, they do not imply that all peptides have to
interact with these positions, which is modeled with static positional weights,
as the peptide similarity is more dependent on high weighted positions. There-
fore these weights should work for HLA alleles were the position specificity of
peptide residues is more conserved better than for them were it is highly vari-
able. Additionally, the degeneracy of TCRs is problematic. Some studies
revealed that amino acid similarity accounts for T cell cross-reactivity, and
similar amino acid substitutions do not perturb TCR specificity [FdBL+08].
This principle is fundamental to associate immunogenicity with sequence sim-
ilarity to self. However, in other cases peptides with minimal sequence simi-
larity induced a T cell response for the same T cell clones [WAC+07], which
makes immunogenicity in this case, not quantifiable thought peptide similar-
ity. These and several other factors explain why, in some cases, the assessment
of immunogenicity thought similarity to self does not work accurately. Some
peptides that are highly similar to self-peptides can be recognized thought
degenerated T cell activation, leading to a highly similar peptide that is im-
munogenic. The results suggest that for most peptides of an HLA allele, the
positional weights are valid, but for some, they may not reflect conformational
reality leading to over or underscored similarities. Some alleles, e.g. HLA-
A*01:01, work better, which indicates a more conserved position specificity.
However, with today’s limited knowledge of TCR specificity, it is impossi-
ble to account for this accurately, especially only from sequence information.
Further research is needed to determine the most relevant features of TCR
recognition to create more accurate similarity scorings.

We reviewed AAIndex indices that were previously associated with im-
munogenicity [TH07]. As described in Subsection 2.2.2, we encoded all pep-
tides with these feature maps and computed the feature map distance score to
the HLA-Ligandome. The obtained score distributions showed similar prop-
erties as the BLOSUM-based similarity to self. However, they only showed
a significant trend of immunogenic peptides to be more distant to the self
proteome for HLA-B*15:01 and HLA-A*24:02. Because the score distribu-
tions to the HLA-Ligandome were similar to that using the BLOSUM62-based
scoring, the 23 AAIndices may describe a peptide similarly to the BLOSUM62
matrix [HH92]. As POPI did not separate immunogenic and non-immunogenic
peptides by alleles, this may also be biased by MHC binding motifs [TH07].
Therefore, we mined for feature maps in the AAIndex database and found out
that a combination of five feature maps can shape the feature mapped distance
to the HLA-Ligandome. We first searched for AAIndices that would cause a
higher distance to self for immunogenic peptides (MAX indices). Therefore we
again used a genetic algorithm as described in Subsection 2.2.3. For all alleles,
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we could find a combination that causes a significantly higher distance to self-
peptides in the HLA-Ligandome. In some cases the genetic algorithm reused
some indices twice to obtain the best solution, suggesting that may a smaller
combination is sufficient. We could show through a 2-fold-cross-validation that
thereby obtained feature maps are generalizable, except for HLA-B*44:02. Us-
ing more folds would be more meaningful but also computationally more de-
manding [AC10]. However, the obtained indices do mostly not describe simple
chemical properties, instead, e.g., describing frequencies in protein secondary
structures (KUMS000103, QIAN880123) [KK00]. All alleles shared no fea-
tures; nevertheless, some are shared by multiple alleles. We again obtained
indices by maximizing the mean 5-fold-cross-validation F1-scores of an SVM
classifier (SVM indices). Each peptide is represented as a two-dimensional
point describing the distance of the first and 10th nearest neighbor, for a given
encoding with five AAIndices. Some chemical properties were identified, e.g.,
positive charge (FAUJ880111) for HLA-A*01:01 [KK00]. However, most in-
dices again described more complex properties. The SVM indices encoding
lead for HLA-A*24:01 and HLA-B*15:01 to more distant immunogenic pep-
tides. We again trained SVMs with the MAX and SVM indices and computed
the F1-scores for all peptides. The classifier using SVM indices could achieve
an F1-score of 49%, which is 8% better than the classifier using MAX indices
and 30% better than the dummy classifier. This shows that describing pep-
tides by amino acid feature maps can increase the predictive performance of
a classifier. Higher F1-scores as for the position weighted BLOSUM similar-
ity score was obtained. This suggests that TCR recognition can be modeled
better with feature maps. A combination of both could presumably obtain an
even better performance.

With “pepdist” we created a framework for the fast computation of k-
nearest-neighbors using a BLOSUM-based similarity or a feature encoded dis-
tance metric. This allows for the optimization of position-specific weights or
the extraction of chemical properties from the AAIndex. The benchmarks
showed that the translation into numerical space could greatly improve per-
formance. With locality sensitive hashing, we created a tool to find approx-
imate nearest neighbors for arbitrary big datasets fastly. This showed that
with proper parameterization, we could obtain an approximate nearest neigh-
bor search with mean squared errors close to zero. For a static database, the
proper parameterization can be trained through sample queries, leading to an
accurate approximate nearest neighbor search that can determine the distance
to self for several thousand query peptides in less than a second.

4.1 Conclusion

Coming back to the main questions stated in Subsection 1.2. We could show
that HLA-Ligandome is representative for the immunological relevant pro-
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teome, even though it only explicitly models peripheral tolerance. However,
the thymus proteome showed for some alleles a more differentiable BLOSUM
similarity score to self. As the HLA-Ligandome is still work in progress, thy-
mus samples may be included at a later time. Additionally, the peptides are
mapped to HLA-alleles based on the highest predicted binding score. An inclu-
sion of promiscuous binders would lead to a more complete allele association
of peptides.

Next, we could show that the similarity/distance to self-peptides differs for
most alleles. However, when using the simple BLOSUM similarity unweighted,
only a minority of the investigated alleles showed a significantly lower median
immunogenic similarity to self, compared to the non-immunogenic one. Nev-
ertheless, this can be changed by using position-specific weights or by mining
physicochemical properties from the AAIndex database. Thereby we could
show that a majority of the HLA alleles show a lower immunogenic similarity
using position-specific weights or a combination of five feature maps from the
AAIndex. We could show that this can increase the predictive performance of
an SVM classifier in two dimensions. We expect that using a more advanced
classifier will increase the performance, but designing the best classification
model would exceed the time frame of this thesis. A combination of more
than five features may also improve the performance but also increase the
number of possible combinations. This increases computation time, as the
genetic should then increase its starting population size. Equally, the range
of possible weights can be increased, which would also increase the number of
combinations and leads to increased computational costs. Further algorithmic
optimizations or more computational resources would be needed, to allow a
more in-depth analysis.

Nevertheless, the discriminability of immunogenic and non-immunogenic
peptides, based on the applied methods, is far from perfect. While for some
HLA alleles it is good, there is hardly any difference in others. Even with fur-
ther optimization on scoring, a purely sequence-based self-tolerance predictor
would most likely not achieve the accuracy needed for therapeutic application.
However, a consensus predictor combining multiple factors may can.

With “pepdist” we created a Python framework which enables to extract
positional weights or feature maps in adequate time. We could implement
several methods for fast nearest neighbor computation. Nonetheless, there
is still room for improvements in the implementation. However, the obtained
computational costs were sufficient for the purpose of this thesis, implementing
the most efficient way of nearest neighbor search in Python would go beyond
the scope of this thesis.
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4.2 Outlook

We showed that position-specific weights can enhance the predictive perfor-
mance of a classifier and that immunogenic peptides can mostly be associ-
ated with a lower similarity to self-peptides when relevant residue positions or
physicochemical properties are considered. Additionally, maybe scoring ma-
trices other than BLOSUM62 describe relevant properties better. These can
be determined similarly with the implemented genetic algorithm. Further al-
gorithmic optimizations or more computational resources can allow a more
in-depth analysis of position-specific weights or relevant feature maps. On the
other hand, a positional weighting can be introduced in the approach using
feature maps to combine the position-specific TCR interactions and relevant
physicochemical properties.

All in all, this can lead to a more powerful self-tolerance based immuno-
genicity predictor. With the recently released tool for assessing immunogenic-
ity based on TCR contact potentials [OY18], and the use of other properties as
sequence features and MHC binding affinity/stability, a next-generation con-
sensus predictor can be created that may achieve the necessary accuracy for
therapeutic usage.
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Chapter 5

Further Tables and Figures

.1 HLA-Ligandome BLOSUM score for k=10

Figure 1: Empirical cumulative distributions of the mean BLOSUM similarity
score for the 10 nearest neighbors in the HLA-Ligandome. The corresponding
size and HLA-allele of the datasets is annotaed above each plot. Exact matches
were excluded from the distribution.
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.2 HLA-Ligandome BLOSUM score for k=100

Figure 2: Empirical cumulative distributions of the mean BLOSUM similarity
score for the 100 nearest neighbors in the HLA-Ligandome. The corresponding
size and HLA-allele of the datasets is annotaed above each plot. Exact matches
were excluded from the distribution.
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.3 HLA-Ligandome BLOSUM score of length-

invariant peptides

Figure 3: Empirical cumulative distributions of the BLOSUM similarity score
of the nearest neighbor in the HLA-Ligandome considering peptides with invari-
ant length. The nearest neighbor of a query is a self-peptide with the longest
highest scoring substring. The corresponding size and HLA-allele of the dataset
is annotated above each plot. Exact matching substrings were excluded from
these distributions.
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.4 Equalized binding affinities

Figure 4: Empirical cumulative distributions of the BLOSUM-based similar-
ity score for 100 subsampled non-immunogenic peptides. The immunogenic
peptides were binned in quantification bins to approximate their MHC binding
affinity score distribution. According to the obtained frequencies we subsampled
non-immunogenic peptides into the same quantifications bins 100 times. This
equalizes the binding affinity distributions between both data sets. With these
sets, we computed similarity to self as usual, and the corresponding results are
shown here. We see the BLOSUM scores for the immunogenic peptides and the
BLOSUM scores for all 100 non-immunogenic subsets.
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.5 Predicted proteome BLOSUM score for

k=10

Figure 5: For each HLA allele the empirical cumulative distribution of the
mean BLOSUM similarity score for the 10 nearest neighbors in the predicted
proteome is plotted. The corresponding size of the datasets is annotaed above
each plot. Exact matches were excluded from the distribution.
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.6 Predicted thymus proteome BLOSUM

score for k=10

Figure 6: For each HLA allele the empirical cumulative distribution of the
mean BLOSUM similarity score for the 10 nearest neighbors in the predicted
thymus proteome is plotted. The corresponding size of the datasets is annotaed
above each plot. Exact matches were excluded from the distribution.
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.7 2-fold-cross-validation of position specific

weights

Table 1: The median BLOSUM similarity scores obtained in a 2-fold cross-
validation. The genetic algorithm should minimize the immunogenic median
BLOSUM similarity.

HLA Immunogenic Non-immunogenic

A*01:01 0.614 0.638
A*02:01 0.642 0.634
A*03:01 0.563 0.547
A*11:01 0.644 0.631
A*24:02 0.551 0.572
B*07:02 0.696 0.706
B*15:01 0.610 0.654
B*44:02 0.633 0.606

.8 2-fold-cross-validation of AAIndex peptide

encoding

Table 2: The median Euclidean distance obtained in a 2-fold cross-validation.
The genetic algorithm should maximize the immunogenic median distance.

HLA Immunogenic Non-immunogenic

A*01:01 4.998 4.742
A*02:01 3.210 3.227
A*03:01 4.213 3.964
A*11:01 4.225 3.953
A*24:02 4.921 4.679
B*07:02 4.356 4.070
B*15:01 4.190 3.685
B*44:02 4.653 4.792
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.9 F1-scores for the position specific weighting

Table 3: The F1-scores obtained for final models with uniform weighting (No
weights), the determined optimized weights in Table 3.5 (SVM weights) and the
determined weights in Table 3.4 that minimize immunogenic BLOSUM simi-
larity to self (MIN weights). In the last column a stratified random dummy
classifier is performance is annotated.

Total F1-scores
HLA No weights MIN weights SVM weights Dummy

A*01:01 0.13 0.32 0.37 0.13
A*02:01 0.59 0.51 0.66 0.54
A*03:01 0.3 0.25 0.32 0.15
A*11:01 0.34 0.30 0.38 0.17
A*24:02 0.22 0.28 0.32 0.15
B*07:02 0.35 0.32 0.54 0.17
B*15:01 0.43 0.51 0.51 0.15
B*44:02 0.14 0.14 0.14 0.05

Mean 0.31 0.33 0.41 0.19

.10 F1-scores for SVMs using different feature

maps from the AAIndex

Table 4: The F1-scores of the feature mapped distance score for peptides
encoded by AAIndices listed in Table 3.5 (SVM) and the determined weights
in Table 3.4 (MAX) that maximize immunogenic distance to self. In the last
column a stratified random dummy classifier is performance is annotated.

Total F1-scores
HLA MAX SVM Dummy

A*01:01 0.34 0.42 0.13
A*02:01 0.56 0.69 0.54
A*03:01 0.34 0.39 0.15
A*11:01 0.38 0.43 0.17
A*24:02 0.38 0.41 0.14
B*07:02 0.58 0.61 0.17
B*15:01 0.54 0.64 0.15
B*44:02 0.19 0.32 0.05

Mean 0.41 0.49 0.19
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